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50 ABSTRACT

51 Recent years have seen a dramatic rise in the use of passive acoustic monitoring (PAM) for 

52 biological and ecological applications, and a corresponding increase in the volume of data 

53 generated. However, datasets are often becoming so sizable that analysing them manually is 

54 burdensome and unrealistic. Fortunately, we have also seen a corresponding rise in 

55 computing power and the capability of machine learning algorithms, which offer the 

56 possibility of performing some of the analysis required for PAM automatically. Nonetheless, 

57 the field of automatic detection of acoustic events is still in its infancy in biology and 

58 ecology. In this review, we examine the trends in bioacoustic PAM applications, and their 

59 implications for the burgeoning amount of data that needs to be analysed. We explore the 

60 different methods of machine learning and other tools for scanning, analysing, and extracting 

61 acoustic events automatically from large volumes of recordings. We then provide a step-by-

62 step practical guide for using automatic detection in bioacoustics.

63 One of the biggest challenges to greater use of automatic detection in bioacoustics is that 

64 there is often a gulf in expertise between the biological sciences and the field of machine 

65 learning and computer science. Therefore, this review first presents an overview of the 

66 requirements for automatic detection in bioacoustics, intended to familiarise those from a 

67 computer science background with the needs of the bioacoustics community, followed by an 

68 introduction to the key elements of machine learning and artificial intelligence that a biologist 

69 needs to understand to incorporate automatic detection into their research. We then provide a 

70 practical guide to building an automatic detection pipeline for bioacoustic data, and conclude 

71 with a discussion of possible future directions in the field.

72

73 KEYWORDS

74 Animal communication, Automatic detection, Artificial intelligence, Bioacoustics, Classification, 

75 Deep learning, Machine learning, Neural networks, Passive acoustic monitoring
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138 1. INTRODUCTION

139 1.1. Acoustic monitoring

140 The acoustic monitoring of captive and wild animals provides valuable data for many 

141 purposes, including scientific research, conservation efforts, management decisions, and the 

142 welfare of individual animals. Acoustic data can be collected using handheld microphones, 

143 on-animal devices, or autonomous recording units (ARUs) placed in the field. Such data can 

144 be collected over periods of time ranging from short, opportunistic, recordings, to long-term 

145 deployments lasting months or years. The use of handheld microphones and ARUs are non-

146 invasive methods that do not require the capture of individual animals, and so reduce 

147 disturbance and welfare impacts (Browning et al., 2017; Soulsbury et al., 2020; Ross et al., 

148 2023). Acoustic data can help with monitoring of elusive, cryptic, or nocturnal species that 

149 are difficult to observe directly (Zwerts et al., 2021), e.g., bats (Frick, 2013), wolves 

150 (Harrington & Mech, 1982; Kershenbaum, Owens & Waller, 2019), or cetaceans (Zimmer, 

151 2011). Additionally, where animals use long-distance vocalisations, ARUs are beneficial in 

152 recording species over large spatial scales, e.g., crested argus pheasants (Vu et al., 2023), 

153 gibbons (Vu & Tran, 2019; Dufourq et al., 2021), howler monkeys (Pérez-Granados & 

154 Schuchmann, 2021), and wolves (Kershenbaum et al., 2019). Such methods can offer 

155 detection ranges in the order of several kilometres for some species, compared with tens of 

156 metres for camera traps.  However, as a passive technique, the obvious disadvantage of 

157 acoustic monitoring is that the animal needs to be producing sound to be detected.

158 Whilst the collection of acoustic data offers many benefits and opportunities, it brings with it 

159 certain challenges. First, the deployment and servicing of ARUs (e.g., replacing batteries and 

160 memory storage cards) can be costly in terms of time and labour (Metcalf et al., 2023b). 

161 Second, although the tools for acoustic monitoring are now more widely available, cheaper in 
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162 cost, and include larger storage capacities and longer battery life (Hill et al., 2019), this has 

163 led to a very large increase in the quantity of data being stored, transferred, and analysed. 

164 Third, a major challenge is distinguishing the sound(s) of interest from background sounds 

165 which takes an enormous amount of researcher time, effort, and expertise, to recognise the 

166 calls of species accurately and annotate the recordings reliably. All of this creates long delays 

167 between data collection and the final results of a study, yet the need for real time results can 

168 be pressing, especially in the field of conservation biology. Automatic detection can solve 

169 many of these issues, as a tool to extract sounds of interest automatically, reducing or even 

170 eliminating the need for manual analysis of the data. 

171 1.1.1. What is automatic detection?

172 Automatic detection is the process of extracting acoustic signals from sound recordings 

173 automatically, without human effort. Once detected, numerous properties of the acoustic 

174 signal can be determined (with or without additional human effort). For example, the acoustic 

175 signal could be classified as being produced by a particular species, its location determined, 

176 and the identity of the animal inferred. The temporal and spectral properties (e.g., 

177 fundamental frequency, harmonics, modulation, etc) of the acoustic signal can be calculated 

178 and used for additional processing or for inferring additional information about the sound 

179 production. Some approaches implicitly combine the processes of automatic detection with 

180 other tasks e.g., classification of the vocalising species, but fundamentally, the first step 

181 within an automated bioacoustic processing pipeline is detection.

182 Throughout this paper, we will use the term “acoustic signal” to describe any sound or 

183 acoustic event produced by an animal without regard to the purpose or intentionality of the 

184 signal. 

Page 9 of 93 Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

9

185 1.2. Scope of review

186 In this paper we set out to highlight and describe the emerging field of automatic detection of 

187 acoustic signals as a highly interdisciplinary effort that requires expertise from both 

188 biological and computer science to move forward. We present a review and tutorial that 

189 addresses both the needs of the community of biologists using acoustic monitoring to answer 

190 ecological, evolutionary, and conservation research questions, and the needs of computer 

191 scientists developing new algorithms and implementations. As the overlap between these two 

192 needs and the overlap between domain knowledge of these two groups is often small, this 

193 review attempts to bridge that gap by addressing both groups simultaneously, enhancing the 

194 missing knowledge of both. A reader from either field will find this review to be a useful 

195 integration of both domains, providing new information to both without being inaccessible to 

196 either. The review arose from an investigative workshop held in July 2023 at Girton College, 

197 University of Cambridge, attended by 22 scientists from both the biological and computer 

198 sciences.

199 By way of introduction, the review first presents the perspectives on automatic detection for 

200 bioacoustics from the point of view of a biological researcher, aiming to instruct the 

201 computer scientist in the needs of the end-user. Then, we present the perspective of the 

202 computer scientist, aiming to instruct the biologist in the technologies available and their 

203 limitations. There then follows a step-by-step guide to the practical implementation of 

204 automatic detection, and finally a discussion of the potential future directions of the field.
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205 2. BACKGROUND OF AUTOMATIC DETECTION IN BIOACOUSTICS

206 2.1. What is automatic detection and why do we need it?

207 To address the challenge of converting terabytes of acoustic recordings into useful 

208 information, scientists have sought to develop techniques to automate the detection of 

209 acoustic signals of interest. The traditional method of identifying the signals of interest from 

210 longer acoustic recordings was to create a spectrogram and manually draw bounding boxes 

211 around the signals of interest, incurring a significant cost in terms of time and expertise. 

212 Fundamentally, the challenge is to replace the human annotator with computational methods 

213 without a consequent loss in accuracy (Miller et al., 2023). At its simplest, the aim of 

214 automatic detection is to indicate segments or windows of audio which are likely to contain a 

215 target sound of interest, substantially reducing the burden, even if the automated annotations 

216 need then be checked by a human. The annotation label can simply be a binary label of 

217 presence/absence of a sound, but this can also be further refined to classify by taxon, call-

218 type, number of individuals, etc., in increasing levels of precision and consequent difficulty 

219 for both annotator and algorithm. For many species, it can be possible to identify an 

220 individual through its unique vocal characteristics (Petso, Jamisola & Mpoeleng, 2021). In 

221 addition to the class label, some systems also allow the position or bearing of the sound to be 

222 estimated (Kershenbaum et al., 2019; Smith et al., 2021). Such information can then be used 

223 in numerous downstream tasks such as occupancy monitoring, spatial habitat use, and 

224 behavioural analysis, and automatic detection offers researchers the opportunity to scale to 

225 larger spatiotemporal datasets.

226 2.2. The current state of the art in automatic detection

227 The use of automatic detection to accelerate acoustic monitoring has a long history (Acevedo 

228 et al., 2009; Aide et al., 2013; Dufourq et al., 2021; Oswald et al., 2022). As an early 
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229 approach towards automation, simple techniques based on the energy within a particular 

230 frequency range, characteristic to the target sound, have been used to detect signals of interest 

231 (Morrissey et al., 2006). However, this approach only works if the signal-to-noise ratio of the 

232 target sound is sufficiently high, and if other sounds are not present in the same frequency 

233 range which act to mask it. Subsequent techniques have used statistical modelling or classical 

234 machine learning models such as hidden Markov models (HMMs) to detect calls that are 

235 modulated in frequency and/or time (Duan et al., 2013; Oswald et al., 2022), by identifying 

236 properties of the target sound beyond simply frequency range. Such models can provide more 

237 robust and sensitive detections. More recently, there has been a strong push towards the use 

238 of data-driven machine learning, exemplified by deep learning (DL), using techniques such as 

239 convolutional neural networks (CNNs) (LeCun, Bengio & Hinton, 2015), recurrent neural 

240 networks (RNNs) (Yu et al., 2019) and more recently transformers (Lin et al., 2022). 

241 Transformers have been shown to obtain impressive detection accuracies, e.g. BirdNET 

242 (Kahl et al., 2021), and the BTO Acoustic Pipeline (Anon., 2023b).

243 There is, however, a highly fragmented landscape in the field of automatic detection – in 

244 particular between the fields of computer science/machine learning, and bioacoustics/acoustic 

245 ecology – and it can be very challenging for practitioners to know where to get started. 

246 Should one build their own classifier from scratch, fine-tune an existing model, or simply use 

247 an off-the-shelf pretrained model (Stowell, 2022a; Dufourq et al., 2022b)? Good quality 

248 detectors already exist in a relatively user-friendly format for birds, e.g. BirdNet (Kahl et al., 

249 2021); bats, e.g. BTO Acoustic Pipeline (Anon., 2023b), Kaleidoscope (Anon., 2023a); 

250 cetaceans, e.g. PAMGuard (Gillespie et al., 2009); rodents, e.g. DeepSqueak (Coffey, Marx 

251 & Neumaier, 2019), MUPET (Van Segbroeck et al., 2017). However, these detectors tend to 

252 be known only by those using them in the field and are not straightforward to generalise to 

253 other taxa without retraining or altering the model architecture or assumptions. There is also 
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254 an imbalance with some taxa being better represented than others in terms of the availability 

255 of detectors. The process of building or fine-tuning a new deep learning model for a 

256 practitioner’s particular habitat and species of interest is non-trivial and involves several tasks 

257 such as cloning repositories from Github, designing data-loaders, and training models on 

258 specialised computing hardware such as Graphical Processing Unit (GPU) clusters. This 

259 serves as a major barrier to widespread adoption of these new techniques unless a tame 

260 computer scientist can be persuaded to assist in the process. In contrast, the more mature field 

261 of automatic detection in camera trapping, e.g. WildlifeInsights, CameraTrapDetectorR 

262 (Hendry & Mann, 2018); Camelot (Hendry & Mann, 2018); Agouti (Casaer et al., 2019); 

263 MegaDetector, can serve as an exemplar for deriving best practices, as existing tools are easy 

264 to use for non-programmers, and easily generalised to different taxa.

265 2.3. What do we aspire for from automatic detection?

266 Despite the challenges associated with the automatic detection of acoustic signals, rapid 

267 advances in machine learning are starting to bring this concept into reality. Although the 

268 context under which acoustic data is recorded and its end use will differ, the common 

269 requirement is for algorithms that take acoustic data as an input, and then detect and return 

270 extracted sounds as the output. Some users may only require outputs of particular target 

271 sounds, such as a specific species or anthropogenic sound, whereas others may require all 

272 sounds to be classified. Ideally, the ultimate end goal of automatic detection for biologists 

273 would be a universal, off-the-shelf algorithm capable of detecting and classifying all animal 

274 vocalisations such that anybody, including those without any training in computational 

275 methods, could process their acoustic data more efficiently and flexibly tailor it to their 

276 particular use-case (Romero-Mujalli et al., 2021). Where an off-the-shelf detector for a sound 
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277 of interest is not readily available, algorithms that are easy to train with a relatively small 

278 amount of data and minimal annotation effort should be the aim.

279 3. PERSPECTIVES FROM BIOLOGICAL SCIENCES

280 In this section, we give, largely for the benefit of the reader from a computer science or other 

281 non-biological background, an overview of the possible roles for bioacoustics in addressing 

282 several important evolutionary, ecological, and conservation questions, highlighting the 

283 potential benefit that automatic detection can provide. 

284 3.1. Overview of uses of automatic detection in the biological sciences

285 Detecting acoustically active animals through their acoustic signals can provide a wealth of 

286 information that is important to conservation biology, ecology, evolutionary biology, animal 

287 behaviour, and welfare (Mcloughlin, Stewart & McElligott, 2019; Odom et al., 2021; Erbe & 

288 Thomas, 2022). Often, these areas of study can overlap: animals can produce sounds to 

289 influence the behaviour of others in a wide range of contexts, e.g., to attract a mate or warn 

290 off an intruder, or as a by-product of other behaviours, e.g., the sound of wings flapping or 

291 footsteps.  

292 Historically, conservation efforts and biodiversity surveys have been skewed towards species 

293 that are easy to trap or track across the landscape, often depending on direct observation or 

294 finding physical traces like scat or hair (Boakes et al., 2010). However, the field of 

295 bioacoustics allows us to survey remote or otherwise inaccessible areas, e.g., deep sea 

296 environments, arctic and antarctic regions, and rainforests (Staaterman et al., 2017), with 

297 research often focusing on the loud and persistent calls of target species to detect their 

298 presence. Like camera trapping, bioacoustics generates large datasets which challenge 
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299 analysis, but, unlike camera traps, the same event can be recorded in multiple places, 

300 multiplying the data to be assessed and analysed. 

301 Below, we provide a broad review of the use of acoustic data in the biological and ecological 

302 sciences, from measures of biodiversity at geographic scales to tracking the movements and 

303 behaviours of individual animals, and highlight how automatic detection can increase the 

304 efficiency and efficacy of monitoring. 

305

306

307

Ecosystems and acoustic indices
Measuring acoustic variation and diversity across 
many different species in the environment.

Species repertoire
Measuring the range of different acoustic signals 
produced by a single species.

Populations and dialects
Measuring acoustic variation between different 
populations of the same species.

Individual identity
Identifying individuals by differences in their 
acoustic signals.

308 Figure 1: Hierarchy of acoustic signal specificity

309

310 3.1.1. Ecosystems and acoustic indices

311 Any multi-species soundscape will consist of a wide range of frequencies being used by 

312 different species in the same environment (Krause, 1993). To maximise the chance that their 

313 signal will be detected, animals usually avoid acoustic signal interference by vocalising in 

314 different frequency ranges or at different times, as described by the acoustic adaptation 
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315 hypothesis (Hansen, 1979; Rothstein & Fleischer, 1987). This ecological phenomenon makes 

316 it possible to detect particular clades or species. It also means that estimates of biodiversity 

317 can be made based on the number of different acoustic signals being produced at different 

318 times/frequencies. 

319 Acoustic indices provide a quantitative measure of acoustic complexity by analysing 

320 variation in the frequency and timing of acoustic signals, rather than identifying individual 

321 sounds. Such indices offer metrics for wildlife monitoring and assessment, characterising 

322 biological communities through sound (Sueur et al., 2014; Buxton et al., 2018). While 

323 acoustic indices are informative about the acoustic complexity or general biodiversity of a 

324 landscape, they are less useful for deriving specific information about species or the 

325 individuals vocalising.

326 Acoustic indices typically do not use automatic detection and classification of acoustic 

327 signals, as, by their nature, they characterise the soundscape as a whole. However, automatic 

328 detection of sound classes, for example distinguishing acoustic signals of anthropogenic 

329 origin from those of biological origin, can improve the ability of acoustic indices to provide 

330 useful indications of biological activity (Narasimhan, Fern & Raich, 2017; Fairbrass et al., 

331 2019; Clark et al., 2023). Thus, effective automatic classification of acoustic signals may 

332 become an important element of improving acoustic indices in future research. 

333 3.1.2. Species occupancy and density

334 Occupancy modelling is the statistical analysis of the patterns and dynamics of a species in a 

335 given space over time (MacKenzie et al., 2003), which can be informed by acoustic signals 

336 (Wood & Peery, 2022; Cole et al., 2022). Bioacoustic occupancy monitoring can provide 

337 critical information on the presence and absence of species and the dynamics of the 

338 ecosystem, particularly for cryptic or elusive species.
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339 Population density estimates model a species’ abundance within a defined space. Density 

340 estimates are an extremely important tool for assessing spatiotemporal population changes 

341 that can be the result of declining prey numbers, land-use change, human-wildlife conflict 

342 (Wolf & Ripple, 2016; Ogutu et al., 2016; Rostro-García et al., 2023), or other factors, and 

343 bioacoustics data can provide an important tool for estimating the densities of animal 

344 populations. 

345 3.1.3. Spatial analyses

346 Population surveys and behavioural investigations often need to be able to determine the 

347 location and/or movement patterns of animals. Bioacoustic surveys have been used in more 

348 recent years to supplement or replace previous tracking methods (Frommolt & Tauchert, 

349 2014). For example, the tracking of migratory species across their extensive ranges, where 

350 radio/satellite telemetry is only useful if the individuals tagged with a transmitter survive 

351 what may be a high mortality journey, can benefit from the application of bioacoustic 

352 techniques. While telemetry is an effective method for learning about a species’ movement, it 

353 can also be highly invasive, can affect the behaviour of individuals being trapped, and is not 

354 always suitable for all species/age groups, e.g. species that are too small to carry the weight 

355 of a transmitter, or species in remote areas (Sharpe et al., 2009). 

356 Depending on the intended research goals, it may be sufficient simply to detect the 

357 presence/absence of an animal within a recorder’s range (macro-localisation), or one may 

358 need to infer the exact position of an individual (micro-localisation). There are benefits and 

359 limitations to each: macro-localisation can inform on occupancy, habitat suitability, territory 

360 use, and migratory patterns. On the other hand, with a significant increase in the complexity 

361 of use, advanced tools also allow a more targeted approach such as multilateration, where the 

362 exact individual's location is calculated based on the time difference of arrival (TDOA) of an 

363 acoustic signal to multiple recording devices (Mennill et al., 2012). Such micro-localisation 
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364 allows avoiding double counting for density estimates, can inform on animal movement 

365 speed and direction, as well as providing fine grained territory boundaries, but requires 

366 additional downstream processing to carry out the localisation analysis.

367 Estimation of a focal animal’s home range and territory provides wildlife managers with a 

368 boundary for their activity (Powell, 2000), permitting the study of intraspecific dynamics and 

369 spatial distribution of individuals across a landscape (Burgos & Zuberogoitia, 2020), which 

370 can be important for conservation action. Real-time automatic detection combined with 

371 localisation reduces the research effort required for follow-up visual observation and can 

372 obviate the need for visual observation entirely. 

373 3.1.4. Species characteristics

374 Automatic detection of acoustic signals is complicated by the fact that there are relatively few 

375 species that, like the American toad (Anaryxus americanus), produce a single call (Bee, 

376 2012), while many species produce multiple call-types, e.g., the northern mockingbird 

377 (Mimus polyglottos) produces hundreds of different song types (Derrickson, 1988). Thus, 

378 while it is relatively easy to link a croak to the presence of a toad, it can be more challenging 

379 to capture all the potential acoustic signals of the mockingbird. This is further complicated if 

380 the species’ different call-types need to be classified beyond simple detection (e.g., as contact 

381 calls vs alarm calls).

382
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383

384 Figure 2. Top: the varied mimicry of the northern mockingbird (Mimus polyglottus), 

385 composed of varied songs of other species, which would be difficult to detect in a general 

386 way. Bottom: the call of the American toad (Anaxyrus americanus), which only produces a 

387 single call, repeated for long periods. The spectrograms show time on the x-axis and 

388 frequency on the y-axis.

389

390 Collectively, all the distinct call types a species produces can be defined as the vocal 

391 repertoire. The size of the repertoire may be thought of as a simple proxy for vocal 

392 complexity (Bouchet, Blois-Heulin & Lemasson, 2013; Manser et al., 2014), and the 

393 structure of the repertoire (e.g., how often call-types are used and interpretations of the 

394 potential uses) are important for describing a species’ behavioural ecology. Therefore, both 

395 general acoustic signal detection (“the target species made a sound in some way”) and 

396 specific call-type detection (“the leopard-specific alarm call has been produced”) are useful to 

397 different studies and these analyses can be nested. Comparisons of vocal complexity between 

398 species, species groups, and taxa (Kershenbaum et al., 2021; Leighton & Birmingham, 2021) 

399 may enable research into broad evolutionary or ecological questions, such as cognitive 
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400 abilities, adaptive advantages of cognitive skills, or the evolution of language (McComb & 

401 Semple, 2005; Dunn & Smaers, 2018).

402 The more varied and less stereotyped calls are, the larger the challenge to automatic 

403 detection. However, the implications of variability within a single call type on the 

404 performance of automatic detection and classification have not been adequately investigated.

405 3.1.5. Populations and social groups 

406 The same species can show variation in their vocalisations among social groups and or across 

407 geographic regions. Research into these differences can offer unique insight into either 

408 phylogenetic patterns, including speciation (Meyer et al., 2012; Riesch et al., 2012; Heaphy 

409 & Cain, 2021), historic geographical patterns (Laiolo et al., 2001; Kershenbaum et al., 2012; 

410 Hebets et al., 2021), or differences between social groups (Ford, 1991; Velásquez et al., 

411 2013; Garland, Castellote & Berchok, 2015; Kershenbaum et al., 2016b). Automatic 

412 detection can scan through long-term recordings to unveil temporal and cultural variations of 

413 vocal behaviours, for example in whales (McDonald, Hildebrand & Mesnick, 2009; Garland 

414 et al., 2011; Best et al., 2022).

415 3.1.6. Individual characteristics 

416 It may be important to identify individual animals and/or characterise the traits or states of 

417 individuals of a target species, such as age, sex, body size, emotional valence/arousal, and 

418 physiology. Acoustic signals can potentially encode all of this information. Examples of the 

419 benefits of individual identification include gaining insights into the evolution and ecology of 

420 a species, such as life history stages and social structure (Clutton-Brock & Sheldon, 2010); 

421 facilitating conservation efforts, for example tracking movement of critically endangered 

422 species in the landscape (Mcloughlin et al., 2019); and improving management in captivity, 

423 for example measuring vocal activity as an indicator of welfare in zoo housed animals 
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424 (Castellote & Fossa, 2006). A diverse range of species’ calls have been found to encode 

425 individual identity from birds (Fox, Roberts & Bennamoun, 2008; Martin et al., 2022) to 

426 cattle (Green et al., 2019), cetaceans (Kershenbaum, Sayigh & Janik, 2013; Bøttcher et al., 

427 2018), and frogs (Qian et al., 2023). 

428 Individual identification provides an open scope for spatiotemporal monitoring of species 

429 without tagging (Aide et al., 2013), while also offering the opportunity for population 

430 estimation using mark-capture recapture methods, which rely on individual identification 

431 (Marques et al., 2013b; Buxton et al., 2018). 

432 Acoustic signals can be used in a wide range of species to assess the intensity (high to low) 

433 and valence (positive to negative) of emotional arousal of animals, which in turn can be used 

434 as an estimate of welfare in animals in captivity (Volodina & Volodin, 1999; Clark & Dunn, 

435 2022) and farms (Manteuffel, Puppe & Schön, 2004). Inferring emotional arousal from 

436 acoustic signals also allows for the assessment of ‘positive welfare’ in animals (Laurijs et al., 

437 2021), and it is possible to monitor farm animals for the onset of disease, e.g., pigs (Sus 

438 domesticus)  (Exadaktylos et al., 2008; Mcloughlin et al., 2019) and chickens (Gallus 

439 domesticus) (Mao et al., 2022). 

440 3.2. Key challenges

441 As outlined above, many studies in ecology and evolution require relatively precise 

442 identification of the type of acoustic signal, for example different call types, the source of the 

443 sound, individual identification, or the localisation of the source of the sound in space. 

444 Despite the huge potential of automatic detection to answer these challenges, the field is still 

445 facing significant barriers during implementation in biological studies, ranging from 

446 limitation in infrastructure, lack of training, inaccessibility of methods, and practical 

447 limitations in the field. For example, field recordings are often not of optimal recording 
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448 quality and have a low signal to noise ratio. Even under ideal conditions, acoustic signals 

449 themselves may be highly varied and irregular, with low stereotypy and a high degree of 

450 variability between individuals and groups, or geographical dialects (Nelson, 2000), all of 

451 which can present a challenge for automatic detection. The broad implementation of 

452 automatic detection requires that the model is robust to the variation presented. 

453 The training of models requires data to be robustly identified and correctly attributed to the 

454 study species or individuals, often produced by visual observation of the callers. Collecting 

455 these data can be challenging as, for instance, individuals may remain visually cryptic, or call 

456 only at certain times. Thus, ground-truthing data requires high quality, reliably identified call 

457 datasets which can be difficult to obtain but are essential. Furthermore, generalising data 

458 from captive animals or in unique circumstances might give rise to misleading results. Thus, 

459 robust identification of large datasets is rare but essential and should be a focus for future 

460 research.

461 4. TECHNICAL PERSPECTIVES

462 4.1. Perspectives from computer science 

463 4.1.1. The role of computation in automatic detection

464 Advanced computational methods can provide solutions to a wide range of bioacoustics 

465 problems. For example, acoustic signals of interest can be merely detected (i.e., the start and 

466 end times identified), or additional information can be extracted, such as classification of 

467 signal type, or location of the sound source. If different types of acoustic signal are present, 

468 they can be grouped into multiple classes, which might represent different species, or 

469 different call types within a single species. Even when a single type of acoustic signal is 

470 present, the task of counting the number of such events or sub-elements of the events is often 
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471 non-trivial (e.g., the different notes in a birdsong, or the individual barks of a dog). Therefore, 

472 the role of automatic detection and automatic processing of bioacoustic data is a broad field, 

473 with many possible applications.

474 Computational methods can help with any task which can be clearly defined. One way to 

475 define the task is through explicit rules (an engineering approach), for example, to specify 

476 that a target acoustic signal occurs solely and uniquely in a certain range of frequencies. 

477 Alternatively, a set of examples can be provided to the algorithm (a machine-learning 

478 approach), and the algorithm is trained to generalise those examples to detect successfully 

479 when presented with novel examples. In the case of automatic detection, some tasks are 

480 simple enough that a good method can be designed directly using the engineering approach: 

481 this typically happens with situations of highly-stereotyped sounds, where template-matching 

482 often works well (Barker, Herrera & West, 2014), or low-noise environments with few 

483 interfering sounds, where energy-detection may work well (Hood, Flogeras & Theriault, 

484 2016). 

485 When the target sounds, or the background, are more complex—such as with recordings of 

486 elaborate bird song or soundscapes with high levels of anthropogenic noise—then machine 

487 learning (ML) is of benefit. As noisy problems can rarely be defined in a clear-cut 

488 “engineering” way, ML attempts to reach a solution by generalising from a set of examples 

489 instead. Although ML has been investigated for many years (Towsey et al., 2012), it is the 

490 era of deep learning that now makes many bioacoustic detection tasks achievable (Stowell, 

491 2022b). It is still important to define the task to be solved clearly – by curating good datasets 

492 for training and evaluating systems, and by specifying the input and output data formats. 

493 Input data format, in bioacoustic applications, is generally some representation of the sounds 

494 recorded, whereas the output format is defined by the nature of the “answer” that the system 

495 is trained to supply, e.g., species presence, individual, call type, etc.
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496 Data curation aside, the power of ML comes from having techniques that can “train” 

497 (optimise) the system to achieve a particular goal, and so the output data format matters 

498 because it is closely tied to this procedure of optimisation. If the output format is a yes/no 

499 answer about species presence, this is the same format as a binary classification task in ML 

500 and can be addressed directly by training a classifier (Stowell, 2022b), which takes sound as 

501 input, and outputs a corresponding indicator: present/absent. Very often, however, the output 

502 format wanted is more complex; for instance, given a long audio recording as input, we may 

503 want to output a list of (predicted) events giving each event’s start and end time, and 

504 optionally its frequency range as well. Note that this is quite similar to “object detection” in 

505 image recognition, and indeed, most bioacoustic research uses spectrograms as a visual 

506 representation of a sound, rather than working with the sound directly. In this case, we may 

507 typically be looking for a list of “bounding boxes” along the time axis or in time-frequency, 

508 leading some to directly adapt image object detection algorithms to spectrograms 

509 (Kershenbaum & Roch, 2013; Venkatesh, Moffat & Miranda, 2022; Wu et al., 2022).

510 When a ML model has been trained, better results may be obtained if the model is applied in 

511 the same conditions as the training data, i.e., “in-domain” as opposed to “out-of-domain” data 

512 (Best et al., 2020). For example, conditions might be “in-domain” if they have the same 

513 background conditions, microphone type, and sampling protocol as in the training data. 

514 4.1.2. State of the art in automatic detection methods

515 No algorithm will generalise perfectly to all situations: the choice of training data represents 

516 the choice of intended domain. Classic machine learning advice would be to avoid "out-of-

517 domain" situations. Yet many taxa do not benefit from such a large amount of prior work as 

518 on birds. Could we nevertheless make use of off-the-shelf models from similar tasks, or must 

519 we start building a large new dataset?
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520 Happily, a recent widespread trend is “transfer learning”, in which one or more pretrained 

521 models are used that have been trained on tasks that are different from (but usually related to) 

522 the original domain: for example, we could consider models trained on human speech 

523 recognition. The models are then re-used for the current application (i.e., animal 

524 vocalisations), and it is often found that the original learning makes training the model on the 

525 current data more effective (Zhuang et al., 2021). 

526 A common approach to transfer learning, known as fine-tuning, consists of modifying only a 

527 small subset of parameters and adapting the inputs and/or outputs format. The modification 

528 requires training the model on a new set of examples, made up of audio recordings and 

529 corresponding annotations. This procedure is computationally much lighter than performing 

530 the process from scratch. It also requires fewer labels since it exploits many of the regularities 

531 in the initial data set. As a rule of thumb, one may try to choose a base model which has been 

532 trained on similar target sounds or background noise, e.g. BirdNet (Kahl et al., 2021). Yet we 

533 have observed successful attempts in adapting models from significantly different acoustic 

534 data, even from different frequency ranges (Çoban et al., 2020; Sethi et al., 2020; Leroux et 

535 al., 2021; Sarkar & -Doss, 2023).

536 When using transfer learning (also known as “pretrained” models), special care must be 

537 taken. The model must be applied to acoustic data that closely resemble the data on which it 

538 has been trained. The user must reflect on details such as matching sampling rates, 

539 normalisations, SNR-levels, and duration of the input audio segments. Usually, the producers 

540 of such models will have trained models on diverse data to ensure generalisation. However, 

541 optimal performance is achieved when staying within the region of operation for which the 

542 model was designed.

543 In this paradigm, the algorithm trained on a different system can be considered to perform a 

544 role similar to the role of the spectrographic representation in aiding human interpretation of 
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545 sounds. In the same way that a spectrogram or filterbank takes a sound waveform and 

546 presents it in a different format (and one where the important features are easy to detect by 

547 eye), so a model trained on a different species, for example, cannot detect the target species 

548 well, but may nonetheless produce an output (known as extracted acoustic features) that can 

549 be used as the input to train another model, which will then be more successful in finding the 

550 focal species. In the ML literature the resulting features are often referred to as embeddings 

551 or latent representations. Unlike traditional acoustic features like a spectrogram these 

552 embeddings are often difficult to interpret on their own. They are the result of a large 

553 composition of complex functions whose parameters have been optimised to solve a 

554 particular task such as classifying an acoustic scene or discriminating from a given set of 

555 videos the one that matches a particular sound. 

556 Despite this, fine-tuning alone may not be sufficient to obtain the desirable level of accuracy. 

557 We may then further adapt the model to our specific needs by retraining all of its parameters 

558 on the acoustic data of interest. One must take into consideration that these models have been 

559 designed with a large number of parameters (317 million parameters for the large version of 

560 HuBERT for instance; (Hsu et al., 2021), to be optimised on thousands of hours of audio. 

561 When trained on a small number of examples this may quickly lead to overfitting, where the 

562 model will work as expected on the data presented during training but will fail to produce 

563 satisfactory predictions for unseen audio examples.

564 Even when many hours of field recordings are available, it is not clear if the acoustic data 

565 will be sufficiently diverse to produce acoustic features that will be performant enough for 

566 downstream tasks such as the detection of vocalisations. In other words, if a bioacoustic 

567 dataset does not contain any useful (or additional) information which could be reemployed in 

568 the downstream detection tasks, then retraining the pre-trained model might not improve 

569 performance. Furthermore, re-training these models on large amounts of data is usually a 
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570 tedious task which calls for the expertise of trained computer scientists and access to costly 

571 computational resources such as GPU clusters. 

572 The approach of adapting transfer learning models to automatic bioacoustic detection, can 

573 still be carried out by pretraining models on bioacoustic data directly, instead of human 

574 speech or generic audio. It has been shown to yield interesting results in the downstream 

575 detection performances for a variety of species (Hagiwara, 2022), but much work still needs 

576 to be done in this area. The success of this method relies on the availability of large datasets 

577 which could allow for the pretraining of a single, large-scale, multispecies foundation model. 

578 As is the case in the speech processing and image recognition domains, making such a model 

579 available to the bioacoustic community could then allow for efficient user-friendly classifiers 

580 to be trained in few-shot learning contexts within a unified pipeline.  

581 An alternative to the transfer learning approaches is to use smaller models, with fewer 

582 parameters that may be trained entirely on the target audio data. For example, an algorithm 

583 called TweetyNet is designed for detecting/segmenting bird vocalisations in a laboratory 

584 context, based on a CNN to be trained specifically for each target bird; the package includes 

585 an interface to simplify that training process (Cohen et al., 2022); DeepSqueak can do the 

586 same for rodent vocalisations (Coffey et al., 2019). Those algorithms directly train the CNN 

587 as a classifier/detector. Another approach used by many in the bioacoustics community is to 

588 train a so-called ‘auto-encoder’ on the dataset of interest to extract deep feature 

589 representations from unlabelled data. This unsupervised approach consists in optimising a 

590 neural network to compress an audio snippet into a numerical vector which is decompressed 

591 to reconstruct the original sound. This technique has been applied to call categorisation in a 

592 variety of species (Sainburg, Thielk & Gentner, 2020; Best et al., 2023).

593 Even using such methods, it is common that bioacoustic datasets are not large enough to train 

594 an ML detector well, or that some categories/contexts are underrepresented in the training 
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595 data. It is thus common (and recommended) to use ‘data augmentation’ to assist with this: 

596 ‘new’ training examples can be created by small modifications of existing ones. This has 

597 been widely investigated and found to improve performance, to a similar extent as the use of 

598 pretrained networks (Lostanlen et al., 2018).

599 The bioacoustics community often faces complex scenarios with sound events overlapping 

600 both in time and frequency (e.g., dawn chorus) or with highly non-stationary background 

601 noise (e.g., urban scenes). These require more advanced and specific solutions that tackle the 

602 problem of working with mixtures of sounds. Data-augmentation techniques serve this 

603 purpose by artificially constructing similar data for which annotations can be created by 

604 design (Jansson et al., 2017; Zhang et al., 2018; Wisdom et al., 2020). These approaches 

605 have been applied to improve performance on up to ten simultaneously-calling bird species in 

606 a simulation study (Parrilla & Stowell, 2022) and in real recordings with significantly fewer 

607 simultaneous calls (Denton, Wisdom & Hershey, 2021; Bermant, 2021).

608 4.1.3. Assessing pre-existing models

609 The fast pace at which the ML community publishes new pretrained models renders them 

610 outdated quickly. The availability of accessible learning resources for some models makes 

611 them a go-to solution for many practitioners, despite having been superseded by other 

612 options. Model publishers should document their work in a way approachable by non-experts 

613 if they aspire to have an important impact on the bioacoustic community. On the other hand, 

614 users of these models may consult the latest benchmarks and challenges that target diverse 

615 applications of audio ML representations. For instance, HEAR (Turian et al., 2022) 

616 benchmarked multiple state-of-the-art methods on a varied set of tasks in speech, music and 

617 environmental sounds. More recently BEANS (Hagiwara et al., 2022) proposes a benchmark 

618 specific to bioacoustics where representations are tested on detection and classification tasks 

619 of several species.
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620 4.2. Conclusions of the technical constraints on the current uses, limitations and 

621 expectations of automatic detection

622 Automatic detection has been used for density estimation (McDonald & Fox, 1999; Marques 

623 et al., 2013a), occupancy (Dawson & Efford, 2009), species presence (Obrist et al., 2010), 

624 trends (Abrahams & Geary, 2020), and phenology, e.g., the start of breeding, or daily onset of 

625 song (Willacy, Mahony & Newell, 2015; Oliver et al., 2018). This technology can be used in 

626 conjunction with other non-invasive monitoring methods such as camera traps, scat surveys, 

627 hair collection, and human observation (Long, 2008), providing additional information and 

628 allowing monitoring of otherwise cryptic species that might elude detection. There should be 

629 ongoing conversations between biologists and computer scientists, bidirectional and iterative, 

630 improving the survey quality, accuracy, and algorithm usability over time. Biologists can 

631 provide the ground-truthing and validation of the use of automatic detection, while computer 

632 scientists can develop the system and work with them to iteratively improve the automatic 

633 detection system.

634 While we have argued for the widespread use of automatic detection systems, there are 

635 limitations, and these should be considered at the start of a project. Some of these are self-

636 evident: signals that do not rise above background noise will be lost as undetectable. Also, 

637 signals can be difficult to separate if they overlap with either intraspecific, interspecific, or 

638 unrelated sounds, as in the dawn chorus when birds sing with many overlapping, very similar 

639 elements, making extraction/detection of a single unit difficult. Dataset sizes (for both 

640 training and deployment) may be a limiting factor. We have referred to data augmentation 

641 and denoising to synthetically account for data limitations. These and other tools (e.g., data 

642 imputation, generative deep learning) are often helpful, but the results are unlikely to be as 

643 reliable or unbiased as they would be with a large representative dataset. They should not be 

644 relied upon as a silver bullet when recordings are rarely observed, noisy or otherwise hard to 
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645 analyse. Just like with human annotation, automatic detection will always be subject to some 

646 level of bias and inaccuracy; one advantage of automatic systems is that these factors can be 

647 numerically evaluated. Automatic detection model predictions are only ever as good as the 

648 input training data. Annotations which are not accurate or have not been conducted 

649 appropriately for the intended application may worsen the efficacy of the model. 

650 Furthermore, density estimation relies on the choice of robust thresholds for confidence in 

651 attribution of sounds. There can be an accumulation of errors over time if the thresholds are 

652 chosen either to be too low or too high, discarding weak identifications wrongly, or placing 

653 too much confidence in others. Finally, all acoustic detection relies on the sound event 

654 occurring, and often species may choose to not vocalise or create a sound and thus can be 

655 missed. What is not heard cannot be counted. However, despite these caveats, we believe that 

656 automatic detection and PAM offer the opportunity to collect and analyse data that cannot be 

657 processed by other means, providing an exciting and valuable new tool for the biological 

658 sciences. 

659 5. A PRACTICAL GUIDE TO AUTOMATIC DETECTION

660 We now present a practical guide for using automatic detection. There are many decisions 

661 that we must make when designing a study that uses automatic detection, and our goal is to 

662 help practitioners optimise these decisions. We realise that some of these decisions may be 

663 constrained by access to financial resources, lack of training in bioacoustics, limited technical 

664 skills in coding and machine learning, and/or lack of access to high-speed internet for cloud 

665 storage and computing. These limitations may be particularly pronounced for researchers in 

666 the Global South. We acknowledge that there is still much to be done to make these tools and 

667 approaches accessible for all.
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668 This guide is developed to help users implement an ‘off-the-shelf’ automatic detection 

669 approach, or for developing or adapting their own approach. We strongly advocate that 

670 practitioners implement a pilot study to ensure the approach they plan to use is feasible 

671 before embarking on a large-scale endeavour. Importantly, even with the most sophisticated 

672 automated approach, a substantial amount of human investment is needed to create training 

673 datasets, evaluate detector performance, and verify the detections.

674 5.1. Define research questions 

675 The most important thing to consider when using automatic detection is the specific research 

676 question. For example, if you are interested in detecting the presence or absence of a rare 

677 signal (e.g., a gunshot or the presence of an endangered species) then you will want to use an 

678 approach that will ensure high recall (i.e., high probability of detection) and you may tolerate 

679 a relatively high number of false positives. Alternatively, if you are interested in subsequently 

680 classifying individuals from the detections, you may prefer to focus on retaining high signal 

681 to noise ratio (SNR) calls and will tolerate lower recall with higher precision. Your research 

682 question will influence every decision you make in the automatic detection workflow, 

683 including study design, data collection and the analytical approach. For guidance on study 

684 design, we point readers to (Sugai et al., 2020). 

685 5.2. Study design 

686 Depending on the nature of the research question, researchers will need to determine their 

687 study design, including hardware needs, recording schedule and whether the processing of 

688 data will be carried out in real time or at a later date (or, ‘offline’). For instance, for the 

689 detection of a single species, researchers may deploy ARUs over the landscape for a period of 

690 time and then download the data onto a hard drive to be processed offline. The recording 

691 schedule also needs to be determined according to the research goal. We refer the readers to 
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692 more extensive discussions of this issue for further details (e.g., (Browning et al., 2017; 

693 Metcalf et al., 2023a). Real-time processing is an emerging area, but due to the limitations of 

694 placing power-efficient computation in the field, real-time automatic detection typically is 

695 more bespoke and less accurate than offline processing.

696 5.3. Start with a pilot study (if possible)

697 Given the costs (both financial and in human labour) of implementing projects that use 

698 automatic detection, we strongly advocate that researchers start with a small scale setup to 

699 test out their planned approach. For a large-scale PAM study, deploying a few recorders over 

700 a smaller spatial scale and a shorter time period may provide enough acoustic data to get 

701 started with automatic detection. If the signals are relatively rare (e.g., gunshots) perhaps 

702 finding online repositories or datasets of samples would be necessary. A well-designed pilot 

703 study will help researchers make informed decisions about annotations, choosing an 

704 automated detector, and reporting and interpreting their results. 

705 5.4. Data collection and archiving

706 Data storage and archiving remains challenging, since the large data volume of the raw audio 

707 in many projects often goes beyond the limits of free or easily-available services. 

708 Furthermore, (Metcalf et al., 2023a) recommend backing up audio data in multiple copies, 

709 and also making use of cloud storage. Simply storing the audio is typically only part of the 

710 issue: you and your collaborators will also need to access it, for example to visualise or to 

711 apply an algorithm to the dataset, which means that speed of upload and download 

712 (bandwidth) may be an equal or greater concern. Cost of storage and bandwidth are often 

713 significant questions. Arbimon (Ganchev, 2020) is one project that aims to store and share 

714 large volumes of wildlife audio on behalf of others.
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715 Reducing data sizes can be achieved in many ways, including audio file compression and 

716 data subsampling. Lossless compression (such as FLAC) can reduce file size without losing 

717 information; lossy compression (such as MP3 or AAC) will discard at least some information 

718 from the signal, but might still support reliable analysis (Heath et al., 2021), depending on the 

719 research question. An alternative strategy very relevant in automatic detection is to keep only 

720 the audio corresponding to the positive detections: for rarely occurring sounds this will 

721 greatly reduce the storage requirements, while keeping the detected audio clips available for 

722 inspection or re-analysis. However, any missed (false-negative) sound events will be 

723 irretrievably lost. This would prohibit future interrogation of the raw data for other potential 

724 uses. 

725 Good-quality metadata including time, date, location and more, is crucial for the success and 

726 reproducibility of any project. This can be stored in the audio files (as “RIFF tags”) or 

727 separately (Metcalf et al., 2023a). Research and other publicly-shared data should be 

728 “FAIR”- findable, accessible, interpretable, reusable (Wilkinson et al., 2016) – and 

729 publishing metadata in standardised formats is key to this. The Biodiversity Information 

730 Standards (TDWG) group maintains the metadata standards Darwin Core (Darwin Core Task 

731 Group, 2009) and Audiovisual Core (GBIF/TDWG Multimedia Resources Task Group, 

732 2013) which help with this through a lightweight approach of specifying common field 

733 names and their definitions (such as “Capture Device”, “Taxon Coverage”, “Locality”, “Start 

734 Timestamp”). By using such standards, researchers can ensure that their metadata will be 

735 understood by others and be findable. It also enables a next generation of methods that could 

736 automatically generalise across multiple available datasets, since the metadata are 

737 compatible.
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738 5.5. Data annotation

739 A well-annotated dataset is critical to the performance of a ML-based automated detector. 

740 When creating annotations, many decisions must be made, including which program will be 

741 used, the specific approach, as well as (often subjective) decisions regarding specifics about 

742 the granularity, or what ‘counts’ as an annotation, for example individual vocalisation bouts 

743 or whole sequences. There have been calls to standardise annotation approaches in 

744 bioacoustics (Nicholson, 2023), similar to what has been done for human speech (Gibbon, 

745 Moore & Winski, 1998) and music (Humphrey et al., 2014). However, to our knowledge a 

746 standardised protocol does not yet exist, perhaps due to the diversity of signal types and 

747 research questions across bioacoustics and/or a lack of communication among fields. Here, 

748 we aim to provide some guidance for annotating a dataset for automatic detection (Figure 4).

749

750 Figure 4. Example annotation of acoustic signals, in this case, wolf howls. Taken from 

751 (Kershenbaum et al., 2019), showing a spectrogram generated using Raven Pro.

752
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753 Due to the relatively large amount of human investment required to get high-quality 

754 annotations, researchers often ask themselves how many annotations are needed. This 

755 generally depends on the research question, and it is often recommended to annotate as many 

756 signals as possible, however there are more specific questions that can help guide these 

757 decisions. The first concerns the classes or discrete types of signals in your dataset. For 

758 example, will you annotate every bird species in a long-term recording? Will you annotate a 

759 single call type from a single species? Or will you annotate all the notes or elements in a 

760 sequence from a single individual? In addition, one must decide whether to annotate the 

761 “negative class” (oftentimes the “noise” or “absence” category). If doing exhaustive 

762 annotation where all the signals of interest are annotated, then it can be assumed that anything 

763 that is not annotated is the “negative class”. However, strategically annotating other 

764 “distractor/noise” sound events may improve detector performance, especially sounds 

765 occurring within the target frequency range which are loud or easily confused with the target 

766 signal. These “noise” labels can help with error analysis and with the training of an 

767 algorithm.

768 Decisions about the temporal scale of the annotations must also be made. A common 

769 approach is to annotate the smallest acoustic unit, e.g., note or syllable (Kershenbaum et al., 

770 2016a); however this method can be very time-consuming for large datasets. For vocal 

771 sequences that are comprised of multiple acoustic units (e.g., gibbon vocalisations) another 

772 approach is to annotate particular call types or phrases within the longer sequence, e.g., 

773 annotate only the female gibbon contribution to the duet (Clink et al., 2023). 

774 The number of annotations needed will be influenced by the research question and the choice 

775 of the automatic detection approach (see below) but may also be limited by external factors 

776 such as funding support for analysts. It is important to consider the diversity of signal types 

777 as well as background noise, and to work to include a distribution of annotations or samples 
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778 across sites, times of day, groups, individuals, etc. A higher number of annotations (and 

779 therefore more available samples for training data) will likely improve detector performance 

780 and may be necessary in cases where the signals of interest are highly variable. In some 

781 cases, such as the use of transfer learning, a smaller number of training samples (~ 25) may 

782 be sufficient (Dufourq et al., 2022a), but even in these cases, only a test set in the order of      

783 one hundred examples would enable a reliable evaluation of the model. Researchers also need 

784 to make decisions about which target signals to include in their annotations, such as whether 

785 to include low SNR acoustic signals, signals that substantially overlap with non-target 

786 signals, or signals that are abnormal in structure. 

787 A common way to do annotations is by visualising spectrograms in a graphical user interface 

788 (GUI) such as Raven Pro (K. Lisa Yang Center for Conservation Bioacoustics, 2014), 

789 SonicVisualizer (Cannam, Landone & Sandler, 2010) or Praat (Boersma & Weenink, 2007) 

790 and creating bounding boxes around the signal(s) of interest. Other possibilities include the 

791 use of an energy or coherence (Wijers et al., 2021) detector to identify all signals above a 

792 certain threshold in a given frequency range and then labelling these detections, applying an 

793 unsupervised clustering algorithm and labelling the batches of samples that have been 

794 grouped together, or the use of DL approaches to identify the start and stop times of signals 

795 of interest automatically, e.g., TweetyNet (Cohen et al., 2022). However, one must be 

796 cautious about mass semi-automated annotations, since these may introduce non-obvious bias 

797 that can affect the conclusions of the study. We recommend including random sampled 

798 manual inspection steps in the procedure. It is important to document your annotation 

799 protocol, including the decisions you made and why you made them, in a way that can be 

800 reproduced by others. We suggest including these protocols as online supporting material in 

801 publications. In addition, it is crucial to check both intra- and inter-observer reliability for 

802 creating annotations (Nguyen Hong Duc et al., 2021).
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Only ‘clean’ calls

805 Figure 5a. A flowchart for designing research questions in relation to automatic detection.

806
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807
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808 Figure 5b. A flowchart showing annotation decisions for automatic detection.

809
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810 5.6. Choose your Detection Pipeline

811
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See Section 4.7.3
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Small Architecture
Pretrained Models

Semi-Supervised Loss
Supervised Loss
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Large Datasets 
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Signals

Loss Are there 
multiple 
signals to 
detect?

No

Yes

Regular Binary Cross Entropy

Averaged Binary Cross Entropy

Data 
Augmentation

See Section 
4.7.4

812 Figure 5c. A flowchart showing the decisions necessary in automated detector design.

813
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814

DETECTOR USE
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Behaviour

Yes

Fix a Precision

Balance 
Recall/Precision

Filter out False 
Positives

815 Figure 5d. A flowchart showing the constraints of end use on automated detector design.

816

817 5.6.1. Interfacing with your pipeline

818 Selecting an automatic detection approach depends on factors such as technical familiarity, 

819 desired granularity, and budgetary constraints. Products such as Kaleidoscope      

820 (https://www.wildlifeacoustics.com/), PAMGuard (https://www.pamguard.org), and Arbimon 

821 (https://rfcx.org/ecoacoustics) provide easy to use interfaces for systems that can perform 

822 automatic detection on audio samples originating from a wide variety of environmental 

823 samples. These tools come equipped with traditional approaches rooted in standard signal 

824 processing techniques but are limited in their ability to utilise modern advances in machine 

825 learning. Conversely, modern DL frameworks, such as TensorFlow, PyTorch, and Keras 

826 (Stowell, 2022b), as well as the models built with them, rarely come with an easy to use 

827 interface which makes them less accessible. Commercial approaches offering cloud-based 

828 machine learning as a service (MLaaS) solutions, such as those from Amazon, IBM, or 

829 Microsoft, allow easier access to these advanced methods, but can be prohibitively expensive. 
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830 Practitioners must decide whether easy-to-use tools are sufficient for the problem at hand, or 

831 whether it would be advantageous to exploit the often superior performance of DL methods, 

832 which require more investment of time, money or both. The complexity of the research 

833 question has a significant influence on the selection but may be outweighed by the need to 

834 invest further in expertise or funding.

835 In the case of any automatic detection approach, the pipeline must be evaluated in the context 

836 of the research questions which necessitates dividing the data to properly evaluate 

837 performance and generalisability, the choice of an appropriate detection mechanism, and the 

838 selection of relevant, comparable, and appropriate metrics.

839 5.6.2. Split your data

840 As for most machine learning tasks, datasets should be split into train, test, and validation 

841 subsets to ensure the true generalisability and comparability of a model’s performance. This 

842 means that an amount of data (usually around 10 to 20% of the total dataset) need to be kept 

843 unseen during training and validation of the model, for which the remaining 80-90% of the 

844 data are used. This helps to avoid model overfitting, which would cause the model to learn 

845 only the characteristics of the training data, without the ability to generalise to new data, and 

846 would bias performance scores (Gareth James et al., 2013, p176). 

847 The validation (or development) set is used for hyperparameter tuning. This is especially 

848 useful in the case of DL models which involve empirical testing of optimal values and setups 

849 for elements such as optimisers, learning-rates, or early stopping. The best performing model, 

850 as determined using the validation set is then applied to the test set. Finally, the best 

851 performing model on the validation set is applied to the test set. The test set should not be 

852 used to fit the values of such hyperparameters or to compare model architectures since it 

853 would no longer serve for generalisation assessment; it is kept for final performance 

854 evaluation. Creating an effective test dataset may include the selection of a separate 
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855 microphone entry, specific time frames, separate recording locations, or subsets of 

856 vocalisations from an individual which were not included in the training set, amongst others. 

857 The general idea here is to separate the prediction capabilities of the computer model from 

858 recording specificities and data related biases. We always want to ensure that an automatic 

859 detection model is generalisable rather than specifically trained for a single recording setup, 

860 location, or individual.

861 To provide an example, in the case of creating a presence/absence detection model, one 

862 should not use annotations from the same file for training and testing. But instead, certain 

863 audio files should be used to create the train dataset, and independent files should be used to 

864 test the detection model. Furthermore, the model should be applied to entire testing audio 

865 files and not only to parts of the test file that have been annotated, as this might result in an 

866 overly optimistic evaluation of the model and potential false positives would be missed.

867 5.6.3. Pick your feature representation

868 Depending on the automatic detection approach, acoustic data may be transformed through 

869 feature extraction to ease the automatic detection process. In the computational bioacoustics 

870 literature, an array of such feature extraction methods can be found, each presenting their 

871 own advantages and limitations. 

872 In bioacoustics, the dominant approach is undoubtedly spectral representations such as 

873 spectrograms or mel-spectrograms. This type of representation usually allows for 

874 interpretable visualisation of acoustic data and provides an easy route to use popular vision-

875 based models such as CNNs for object detection and image classification. Despite this, some 

876 information from the raw waveform may get lost when computing these representations. This 

877 is especially the case for transient signals such as odontocetes’ clicks which are poorly 

878 represented by Fourier transforms (Jiang et al., 2018). CNNs developed for spectrograms 

879 cannot be used directly for waveforms, because the data is of different dimensionality; 
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880 however there have been a lot of recent developments in DL methods applied directly to 

881 waveforms and so this is increasingly feasible (Baevski et al., 2020).

882 DL methods now allow for high-dimensional inputs such as whole spectrograms, with the 

883 succession of layers extracting higher level features and information. However, historically 

884 users were the ones responsible for selecting relevant features to represent signals. In this 

885 context, MFCCs were often used, and given to a classification algorithm such as a support 

886 vector machine (Mitrovic, Zeppelzauer & Breiteneder, 2006). For relatively simple use cases 

887 e.g., stereotyped signals and low background noise, this approach might suffice in bringing 

888 satisfactory performances.

889 Recently, as stated in Section 0, extracting pretrained latent representations as features is also 

890 being adopted as a promising solution. This approach may imply additional effort on the part 

891 of the user and raises an array of questions on pretraining datasets, selected model 

892 architectures or the need for higher computational power. It can also prove successful in 

893 easing the downstream learning process or allowing for smaller annotated datasets in few-

894 shot learning perspectives.

895 Despite the advantage of using such abstract representations, using traditional engineered 

896 features such as fundamental frequency, call duration or number of notes may still prove to 

897 be effective depending on the task at hand. These can also be combined with features 

898 extracted from the time domain such as energy and zero-crossing rates. These can then allow 

899 for the use of simpler algorithms which may be easier to implement and require little 

900 computational power and training time.

901 Overall, there is no such thing as the perfect feature extraction method for bioacoustics. 

902 Comparing different feature representations should always be the preferred approach and can 

903 be carried out on the previously mentioned validation set, ideally in a pilot study.
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904 5.6.4. Decide on feature transformation

905 Prior to feature extraction, specifically in the case of noisy recordings characterised by low 

906 SNR, some detectors may benefit from denoising, i.e., the automatic removal of background 

907 noise from the acoustic signal of interest. An extensive overview of recent approaches can be 

908 found in (Xie, Colonna & Zhang, 2021) with accessible open-source solutions. Some of these 

909 methods are built on light-weight algorithms such as spectral-gating (Sainburg, 2019), others 

910 involve the use of DL with CNNs, Noise-2-Noise-based approaches (Bergler et al., 2020), or 

911 denoising-autoencoder models  (Vickers et al., 2021; Yang et al., 2021). 

912 Although it is useful in some applications, this pre-processing step is not always 

913 recommended and must be used with caution as it may result in a loss of information. In 

914 some cases, noise can also be directly handled by the detector itself, especially when using 

915 noise-resilient DL architectures or when stationary noise is not overlapping the target signals. 

916 In cases where noise reduction is applied prior to training, the evaluation and test datasets 

917 will need to be put through the same process, to ensure that training and testing data have 

918 comparable characteristics and contain similar acoustic information. When building a noise 

919 resilient model, one may also resort to multi-condition training approaches. This method can 

920 imply adding noisy corrupted versions of the data to the training set or including both the 

921 original and the denoised versions of the data during training to help with model robustness 

922 to noisy acoustic contexts. This approach is fairly common in speech processing (Yin et al., 

923 2015) but needs further exploration in bioacoustics. 

924 Depending on the amount of training data available, data augmentation techniques may be 

925 used to artificially increase the variability of the data on which models are optimised. The 

926 choice of which augmentation technique to use depends on the application. One should aim 

927 to apply transformations that cover the range of variations found in real signals. However, 

928 care must be taken to avoid transformations that could invalidate the annotations. For 
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929 instance, in a bird call detector reversing sounds could be a tempting simple transformation, 

930 yet this could result in artificially making a bird call more similar to that of another species. 

931 Simple transformations may also create artefacts that can complicate the modelling, for 

932 example a pitch shift of a howl may also unrealistically shift the background noise.

933 Commonly used techniques include stretching or compressing the duration of acoustic 

934 signals, shifting their pitch, making small volume modifications, or adding a variety of noise 

935 or mixing with other audio events via some linear or non-linear combination (e.g., taking one 

936 presence event and mixing it with one or more absence events). These transformations may 

937 also be combined to produce more variation.

938 Recently generative deep-learning methods, such as Generative Adversarial Networks 

939 (GANs) have been proposed in order to generate synthetic examples (Wang, She & Ward, 

940 2022; Bergler et al., 2022a).

941 5.6.5. Decide on a method

942 5.6.5.1. Deep learning or not

943 As mentioned above, the choice of a detection mechanism is dependent at least partially on 

944 the complexity of the problem. If the signals are well defined, have high SNR, are highly 

945 stereotyped, and the research question involves simple segmentation and can be done offline, 

946 a package such as Kaleidoscope or Arbimon may be more than adequate. 

947 Using machine (deep) learning may be advantageous in situations requiring a more complex 

948 analysis, such as call type classification, or where robustness to environmental noise is 

949 necessary (Aodha et al., 2018; Stowell, 2022a). However, in situations where access to either 

950 a large amount of computing resources or the training / expertise to use them effectively is 

951 limited, the use of DL may not be possible. Additionally, it must be considered where the 

952 detection mechanism will be deployed. If access to a large computing cluster is readily 
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953 available but the end result must function on a small device for field deployment, then a large 

954 and complex model may not work. Conversely, if the final model will only be used offline 

955 using minimal computing resources (budget GPU), then the model choice becomes somewhat 

956 more flexible. Different machine learning approaches are given in Table 1, together with their 

957 requirements and example studies.

958
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959 Table 1. Different types of machine learning techniques

Learning Type Labelled Data 

Requirements

Metrics Visualisations Examples

Supervised 

(Segmentation, 

Classification)

Large amount of 

labelled data

Accuracy, Precision, 

Recall, F-Score, AUROC, 

mAP, UAR

Confusion Matrix

ROC-Curve, PR-Curve

(Bergler et al., 2022b)

Unsupervised or self-

supervised 

(Clustering)

Labelled Data Not 

Necessary

Reconstruction Loss 

(MAE, MSE), 

homogeneity, completeness

Reconstructions, Dim-

Reduction (t-SNE, 

UMAP)

(Cuevas et al., 2017)

Semi-Supervised 

Learning

Some Labelled Data -

Large amount of 

Unlabelled data 

(optional)

Both Supervised & 

Unsupervised

Both Supervised & 

Unsupervised

(Bermant et al., 2019; Saeed, 

Grangier & Zeghidour, 2021; 

Leroux et al., 2021; Hagiwara et 

al., 2022)
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961 5.6.5.2. Choose your evaluation metrics

962 The evaluation of the automatic detection mechanism depends primarily on the type of task to 

963 be performed. A fully supervised detection / classification task is typically evaluated using 

964 metrics such as accuracy, precision, recall, F-score, or area under the receiver operating 

965 characteristic curve (AUROC) (Lever, Krzywinski & Altman, 2016).  These all provide 

966 different insights and can help evaluate how the model is performing. For example, precision 

967 indicates the fraction of relevant results (true positives) that are found among all detected 

968 events, whereas recall indicates the fraction of signals in the dataset which were effectively 

969 found. Typically, a balance must be decided which metrics are most important for a particular 

970 task. For example, recall may be an important score to consider when detecting rare 

971 phenomena where missing a single detection of an underrepresented class may prove costly. 

972 Wrong choice of metrics may bias the results, for example, in the case of highly unbalanced 

973 datasets, i.e., when the acoustic object to be detected is rather underrepresented in the dataset 

974 compared to negative labels, accuracy may be very high despite low performances on the 

975 small number of positive test samples.

976 Visualising results from supervised training methods can involve a confusion matrix, which 

977 is a table that shows the ground truth values on one axis and predicted values on the other, 

978 allowing visual analysis of model performance which is easy to digest. Another option is the 

979 receiver operating characteristic curve (ROC curve), which plots the trade-off between true 

980 positive rate (TPR) and false positive rate (FPR) at all confidence thresholds, enabling the 

981 analyst to more easily choose a prediction threshold which suits their needs. The area under 

982 the ROC curve (AUROC) gives a summary of the model’s performance across threshold and 

983 is agnostic of threshold choice.

984 A similar visualisation to the ROC curve is the Precision-Recall (PR) curve, which also 

985 highlights the balance between missing out events (false negative) and making false alarms 
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986 (false positive). The area under the PR curve is commonly referred to as the mean average 

987 precision (mAP). The important difference between PR and ROC curves is that the precision 

988 gives the proportion of correct detection among all detections and the FPR indicates the 

989 proportion of wrong detections among all negative examples. In the case of highly 

990 unbalanced datasets (e.g., 1% of positive examples), the FPR can be rather optimistic as 

991 compared to the precision, and thus the mAP might come out to be significantly lower than 

992 the AUROC. Detailed discussions on possible performance metrics can be found in (Davis & 

993 Goadrich, 2006; Hildebrand et al., 2022).

994 Useful metrics for unsupervised learning are harder to identify, as it depends on the research 

995 question. If labelled data are available, they can be used to assess the quality of a clustering 

996 attempt by measuring completeness (across how many clusters are samples with the same 

997 label) or homogeneity (the proportion of samples in a cluster with the same label). 

998 Visualisation for unsupervised clustering results are often done by reducing the 

999 dimensionality of the reductions to either two or three dimensions using t-Stochastic 

1000 Neighbour Embedding (t-SNE) (Maaten & Hinton, 2008), Uniform Manifold Approximation 

1001 and Projection (UMAP)  (McInnes, Healy & Melville, 2020), or a similar method. 

1002 5.7. Verifications - check your results

1003 The verification of model performance on the test data should involve quantitative and 

1004 qualitative evaluations. Quantitative metrics give the performance in terms of comparable 

1005 values like the F1-score, accuracy, precision, or recall. Whilst the qualitative metrics would 

1006 help to understand the practical implications of the model. Qualitative analysis involves 

1007 manually checking or visualising the predictions. This may involve plotting automatic 

1008 segmentation results on spectrograms to visually account for the precision of detected time 

1009 frames. It may also be carried out through a simple manual inspection of a subset of results. 
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1010 Careful manual analysis of the signals with missed detections or false alarms could help to 

1011 identify the characteristics that trigger the models and help to improve the models further by 

1012 adding the specific variations needed in the training data or clean up train data (especially 

1013 wrong annotations or mislabelled data).  

1014 5.7.1. When is a model good enough? Performance thresholds

1015 Understanding the performance thresholds and being realistic about the task is a pragmatic 

1016 way of approaching the problem. It is important to understand that machine learning models 

1017 are statistical in nature and may never provide 100% performance even with perfect data or 

1018 models. Understanding the limitations of the model and the desirable performance in the real 

1019 world scenario can help set the thresholds for performance, for example, trade-off between 

1020 false positives and missed detections (Karnan, Akila & Krishnaraj, 2011). In some scenarios 

1021 it may not be even practically feasible to achieve a desirable performance due to factors like 

1022 overlapping sounds, environment noise or very low SNR. But understanding and defining the 

1023 problem based on a trade-off between what is feasible with the acoustic data and what is 

1024 desirable could help define performance thresholds and build practical models. For example, 

1025 defining the range of distance within which the target species needs to be detected.  

1026 5.7.2. How harmful are mistakes (false positives vs false negatives)?

1027 The use case for automatic detection will influence how much (section 4.8.1) and what kind 

1028 of errors are acceptable. For instance, if doing an analysis on vocal behaviour, missing a call 

1029 in a sequence might strongly distort results. Conversely, if occupancy trends are aimed for, 

1030 missing one call in a sequence is insignificant, and imperfect detection can be incorporated 

1031 into occupancy models (Bailey, MacKenzie & Nichols, 2014). Recall is thus more or less 

1032 important depending on the type of study being conducted.
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1033 In general, false positives are undesirable, but a certain amount might be acceptable (Shiu et 

1034 al., 2020). In any case, converting the precision into the number of false positives per hour 

1035 allows an unambiguous interpretation by the user and the planning of how to deal with false 

1036 alarms.

1037 Additionally, prior knowledge on vocal behaviour such as the sequence regularities might 

1038 allow filtering out of false positives. Such priors can be used to reduce confidence thresholds 

1039 and increase the recall, but with the risk of imposing too strong priors and missing out on 

1040 uncommon sequences.

1041 5.7.3. Reproducibility and accessibility

1042 We also expect automated vocalisation detection systems to be made available to other users, 

1043 thus broadening the contribution to the field of bioacoustics (especially to users without a 

1044 strong computer science background). For this purpose, code for detection systems should be 

1045 shared in comprehensive and accessible ways, such as version control repositories, and 

1046 should be well documented with detailed user manuals (Braga et al., 2023). An easy way to 

1047 make a detection model available to the community is also to follow common APIs that will 

1048 allow their integration into pre-existing interfaces, such as ARISE (Hogeweg & Stowell, 

1049 2023) or Raven Pro (K. Lisa Yang Center for Conservation Bioacoustics, 2014). 

1050 Besides publishing code for experiments to be reproducible, datasets used for training and 

1051 testing should be made available to the community for building new systems and comparing 

1052 them using standard annotation protocols (see Section 5.5). Indeed, public benchmarking 

1053 datasets exist (Joly et al., 2015; Politis et al., 2020) but cover only a relatively small set of 

1054 species targeted by bioacoustic studies.
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1055 5.7.4. Access to raw recordings

1056 Ideally, additional to labelled training dataset, raw recordings (as opposed to cut-out 

1057 snapshots) are of potential value to the machine learning community (to train self-supervised 

1058 models for instance) and to the research community in general to reuse the data for other 

1059 tasks or to create new annotated datasets from previously recorded data. But it might not be 

1060 always feasible to make this readily accessible in public repositories due to storage and other 

1061 constraints. We encourage researchers to store the raw recordings locally and share them on 

1062 demand with the community or with interested parties.

1063 6. WAYS FORWARD

1064 We now consider some important ways forward for automatic detection for bioacoustics, 

1065 including best practices which should be implemented now, the challenges still to be 

1066 overcome, and the future direction of the field. 

1067 6.1. Challenges

1068 6.1.1. Bioacoustic challenges

1069 Although automatic detection has already brought large improvements to the field of 

1070 bioacoustics, challenges remain which are closely related to the nature of animal sound 

1071 and/or the desired uses of such data. For instance, population density estimates rely on 

1072 detections being reliable, without double-counting individuals’ vocalisations when they are 

1073 picked up by multiple devices (Kimura et al., 2010; Marin-Cudraz et al., 2019), and are 

1074 further improved if calls can be localised and attributed to an identified individual (Nijman, 

1075 2007; Knight & Bayne, 2019; Hedley et al., 2021; Law et al., 2021). Moreover, in most cases 

1076 population density cannot be estimated without knowing the detection range of the system 

1077 (Metcalf et al., 2023a). The detection range of the acoustic signal will depend on multiple 
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1078 factors including source level and frequency range of the signal, characteristics of the habitat 

1079 including ambient noise levels, vegetation and topography, along with specifications of the 

1080 ARU (Haupert, Sèbe & Sueur, 2022). However, detection range is often difficult to estimate, 

1081 especially in forest environments or areas with extreme topography, and in many cases is 

1082 ignored or assumed to be consistent across studies when this may not be the case. When 

1083 species of interest are near the limit of the detection range of the device, recordings of vocal 

1084 signals may become attenuated or missed. This might cause problems in some tasks which try 

1085 to capture specific aspects of the vocalisation, for example to infer behaviour, caller identity 

1086 or communication patterns, rather than generic tasks which look at occupancy (Spillmann et 

1087 al., 2017).  

1088 Even when accurately focusing on our target species’ vocal signals, animals might engage in 

1089 simultaneous vocalisations or choruses (Torti et al., 2018), which makes a simple 

1090 timestamped detection system insufficient for acoustic behaviour analysis. Also, it can be 

1091 difficult to distinguish vocalisations of similar species if they share characteristics, e.g., dog 

1092 barks and coyote barks share a number of similarities which make it difficult to determine 

1093 which species produced the rapid-fire sequence of noisy barks, though there are some 

1094 quantitative differences (Feddersen-Petersen, 2000). 

1095 6.1.2. Computational challenges

1096 Computational challenges in this field include questions of algorithms, datasets, 

1097 computational efficiency, computing platforms and more. 

1098 One overarching challenge within machine learning in the broad, and with particular 

1099 relevance to automatic detection, is the ability to generalise. For example, a model well-

1100 trained for a particular species can perform poorly with even slight variations in recording 

1101 devices, ambient noise, or operating environments. This could lead to low accuracy without 

1102 further testing and adjustment. Creating scalable models that have the flexibility to add new 
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1103 species to the training dataset, to increase the number of vocally active species which can be 

1104 detected, is still a challenging task. Transferring knowledge from models built with data from 

1105 one species to a new species without further training data is even more desirable. We also 

1106 note that many models are highly task specific - the data specification, annotations, model 

1107 architectures, and systems are highly optimised for best performance. For example, a system 

1108 used to determine the occupancy of a species may not be suitable for individual 

1109 identification, understanding communication, or behaviour patterns which superficially 

1110 appear to be related but are subtly different tasks. It is not immediately clear to a user how far 

1111 to trust in the generalisation of a detector. 

1112 Acquiring generic datasets that can address multiple tasks, such as population density 

1113 estimation and behavioural characteristics, poses a significant challenge due to the limitations 

1114 in data collection strategies. Typically, data collection is initially planned to address specific 

1115 tasks, which makes it difficult to acquire datasets that can be scaled to any given task. This is 

1116 a challenge as it is essential to streamline and optimise the recordings to collect only data of 

1117 interest to a particular task to increase storage and computational efficiency. But, at the same 

1118 time, the data collected might not include the context or information that was needed to use it 

1119 for a new task. A lack of generic, benchmark datasets has significant implications for the 

1120 standardisation of methods in the field and the appropriate evaluation of research.

1121 In bioacoustics as in other fields, DL comes with very limited interpretability, an issue known 

1122 as the ‘black box problem’. This amplifies the problem that conclusions drawn about DL 

1123 models will be specific to the dataset they were tested on, which significantly hinders the 

1124 process of finding a consensus for the best architecture or training procedure to be used. In 

1125 certain cases, it is also unclear as to how different research studies split their datasets and 

1126 conduct model evaluation. As it stands, little to no standards on the best approaches exist and 

1127 without these best practices put in place, authors will implement their own approaches within 
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1128 their research. The best opportunity to overcome issues such as these is firstly to encourage 

1129 further development of public access or benchmark datasets, and secondly to probe models 

1130 on their detailed behaviour regarding these datasets (Alain & Bengio, 2018). Within the 

1131 current literature, the approach that authors have taken to implement their machine learning 

1132 testing methodologies and model evaluation differs drastically. In most cases, comparisons 

1133 are not made to existing results on datasets that are publicly available, instead, most studies 

1134 present their findings related to their proposed method on the dataset that was collected for 

1135 the study. These observations are quite different to what has been observed within the 

1136 computer vision and natural language processing literature whereby most studies will 

1137 compare their proposed method to various baselines and existing state-of-the-art methods on 

1138 the same datasets. Consequently, a comparison between research studies within bioacoustics 

1139 is not feasible and determining the state-of-the-art is non-trivial. Various initiatives exist that 

1140 provide bioacoustic benchmark datasets and standardised public evaluations, including 

1141 automatic detection in particular, though these are neither as large nor as widely-used as in 

1142 mainstream ML application domains (Stowell et al., 2019; Ferrari et al., 2020; Hagiwara et 

1143 al., 2022).

1144 Training machine learning models, particularly deep neural networks, is computationally 

1145 intensive. Specifically, computers, workstations, or servers with a large amount of CPU 

1146 (central processing unit) and GPU may be needed, to speed up the training or just to make it 

1147 achievable in reasonable time. Furthermore, certain deep neural networks require a large 

1148 amount of GPU RAM to load the model into memory given the large number of trainable 

1149 neural network parameters that need optimisation. The issue of access to computational 

1150 power can exacerbate inequalities between people, institutions, and countries. However, the 

1151 good news is that the widespread use of pretrained models can massively decrease the 

1152 amount of computation needed: most researchers should not need to train a model from 

Page 55 of 93 Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

55

1153 scratch. This helps to reduce inequalities as well as the carbon footprint incurred through a 

1154 move to ML methods.

1155 In conjunction with computation, data storage requirements have skyrocketed with the 

1156 amount of data being collected from PAM and necessities to store, share and create backups 

1157 of these very large datasets. In certain cases, practitioners have had to ship hard drives 

1158 physically across the world to share acoustic datasets, and in other cases practitioners share 

1159 large datasets via cloud-based solutions. It is unlikely that storing all audio for all projects is 

1160 feasible, and yet discarding audio takes away the possibility of reanalysis or new uses. 

1161 Bioacoustics will benefit from the development of mixed schemes with well-designed 

1162 heuristics to store some audio in full resolution (e.g., detected audio clips) and the remainder 

1163 in highly compressed formats which are still reusable (e.g., embeddings or low-bitrate lossy 

1164 compression).

1165 There are other considerations that arise from the large data volumes that are required both 

1166 for training automatic detection systems, and for investigating biological questions using 

1167 bioacoustics. Logistical challenges in maintaining the data collection devices include 

1168 changing batteries, calibration of microphones, and general wear and tear. Sometimes the 

1169 devices need to be deployed in remote, difficult-to-access, or even dangerous locations, 

1170 which makes the maintenance even more challenging. Therefore, the effort required to gather 

1171 the volume of data needed for training automatic detection models needs to be considered 

1172 carefully. However, artificial intelligence being a rapidly evolving field means that new 

1173 techniques and models may ease (or indeed exacerbate) the problems of providing enough 

1174 data. 
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1175 6.2. Future directions

1176 6.2.1. Accessibility

1177 The extent to which automatic detection for bioacoustics is accessible to a wide range of 

1178 researchers across different fields and geographical regions is patchy and insufficient. Future 

1179 developments in the field must include increasing the ease with which researchers can 

1180 implement and customise the technology. Usable, stable, and open-source tool kits with an 

1181 associated GUI, and potentially a cloud-based solution, can aid the entry of practitioners from 

1182 a non-machine-learning background and reduce the learning curve. Standards-based 

1183 interoperability and component-based approaches will help ensure that solutions remain well-

1184 maintained and usable. 

1185 To move to the next generation of automatic detection, we look forward to further work 

1186 developing the scale, reliability, and generality of machine learning methods in bioacoustics. 

1187 But even considering the current state of the art, the barrier to entry for practitioners, students 

1188 and researchers who are new to the field of machine learning is high (Broll & Whitaker, 

1189 2017; Schultze, Gruenefeld & Boll, 2020). This barrier is potentially even higher for 

1190 newcomers in machine learning for bioacoustics than those entering the field of machine 

1191 learning for computer vision or natural language processing. For the latter two, there are large 

1192 quantities of educational material, including blog posts, online tutorials, books, videos, and 

1193 software repositories. The number of research laboratories, and researchers from tertiary 

1194 educational institutions working on automatic detection for PAM or bioacoustics in general is 

1195 not evenly distributed between the Global North and South, and thus, the ability to train 

1196 students may differ between regions. There is a pressing need for more educational material 

1197 to become available so that those entering the field can rapidly learn the necessary skills to 

1198 facilitate progress, and as such, we encourage researchers and practitioners to create and 

1199 share open-access educational material.
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1200 Complementary to educational materials is of course that systems themselves should be more 

1201 accessible and user-friendly. The required use of Python or R (let alone libraries such as 

1202 Tensorflow, and repositories such as Github, etc) acts as a barrier to many potential users, 

1203 and so projects that develop good interfaces are to be celebrated. However, the pace of 

1204 change in ML methods is fast, as well as the diversity of platforms (e.g., mobile devices), so 

1205 it is risky to advocate a single graphical interface. The solution is to rely on component-based 

1206 approaches and well-documented standards; as long as user interfaces can use standards-

1207 based methods to “talk to” algorithms and datasets, and each of these components can be 

1208 replaced, substituted and improved, we provide a good substrate that makes it easy for 

1209 interface developers to add value to the work (Darwin Core Task Group, 2009; GBIF/TDWG 

1210 Multimedia Resources Task Group, 2013). For all these components, the community needs to 

1211 consider their maintenance models (open source or commercial, free or subscription-based) 

1212 and the ongoing maintenance of core components should not be left to chance.

1213 6.2.2. Foundation models

1214 As with the maturation of machine learning in fields such as image or speech recognition, we 

1215 expect animal vocalisation detection models to progressively standardise, not only in terms of 

1216 model architectures but also in data representation. Indeed, pretrained models created from 

1217 large datasets with a variety of species or taxa can yield rather generic embeddings, allowing 

1218 good performances when fine-tuning for a specific task, even when relatively few labels are 

1219 available (see Section 0). Fields such as text processing and image recognition are beginning 

1220 to move to a scale where “foundation models” emerge, meaning DL models which are trained 

1221 across massive and highly varied datasets, whose scales lead to emergent generalisation 

1222 behaviour and which can be reused for a wide range of downstream tasks (Bommasani et al., 

1223 2022). The same could happen for bioacoustics and automatic detection: although the size of 

1224 the benefit is hard to foresee, large-scale highly generalised models could indeed overcome 
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1225 the significant limitation in bioacoustics that many custom tasks do not come with strong 

1226 training datasets. An alternative approach is few-shot learning, recently explored to 

1227 generalise robustly from as few as five examples (Nolasco et al., 2023). Such methods 

1228 indicate that “one big dataset” is not necessarily the main objective for the field. These trends 

1229 may converge, with the many public bioacoustic datasets forming a richly structured 

1230 pretraining curriculum for systems to generalise well from simple examples.

1231 6.2.3. Multi-modal detection

1232 Some challenges posed by automatic bioacoustic detection, including difficulties in 

1233 separating individual emitters, precisely assessing population density, double counting, or 

1234 missing detections, could potentially be eased by multi-modal approaches. In fact, 

1235 incorporating additional modalities such as images, video or GPS data, may result in 

1236 complementary information missing from the acoustic data and enhance the detector’s 

1237 performance, which can then enable uses such as abundance estimation (Akamatsu et al., 

1238 2013) and activity tracking (Li et al., 2020; Morrison & Novikova, 2023). Automatic 

1239 multimodal approaches can also allow tackling complex and innovative behavioural 

1240 questions for species known to communicate in multimodal ways, such as primates 

1241 (Slocombe, Waller & Liebal, 2011; Liebal & Oña, 2018) and spiders (Uetz & Roberts, 2002; 

1242 Hebets, 2005). Multimodal data thus presents many advantages for automatic bioacoustic 

1243 detection, all the while raising an array of limitations and adding a certain degree of 

1244 complexity to machine learning solutions. Recording multimodal data is a first important 

1245 challenge which can be partly addressed through the increasing availability of new efficient 

1246 hardware solutions, such as lightweight, inexpensive camera traps and drones. The automatic 

1247 processing of non-acoustic data is also being investigated and numerous machine learning 

1248 models exist as promising solutions (Akamatsu et al., 2013). Yet, the simplicity, diversity and 

1249 quantity of information contained in bioacoustic data seem to make it a superior solution in 
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1250 most detection tasks (Enari et al., 2019), at least as long as vision-based machine learning and 

1251 visual recording hardware / large data storage and processing don’t show significant 

1252 improvements. 

1253 6.2.4. Keeping a biologist in the loop

1254 Some of the ML models and systems are designed without the full domain knowledge or 

1255 context of the problem being addressed. There needs to be close collaboration between the 

1256 ML engineer designing the systems and training models, and biological scientists, as domain 

1257 experts, who can validate the solutions and performance of the models. The process pipeline 

1258 needs to be designed such that domain experts should closely monitor every stage from the 

1259 methodology for data collection, design of data collection devices, data annotation techniques 

1260 or methodology, data splits, model architecture (including inputs and outputs), and 

1261 performance metrics and performance threshold values. It is also worth noting that the very 

1262 same biologists may also be the ideal audience for the commercialisation of foundational 

1263 models once they become available and the technologies and methods are easily accessible. 

1264 The system should be iteratively improved with the active feedback from experts in the field 

1265 or through the knowledge of the domain expert. This in turn maps to the process flow 

1266 standardisation discussed in earlier sections. 

1267 Since bioacoustic tasks deal with big datasets, demanding high computational power, there 

1268 needs to be considerations on the environmental impacts of data storage, data transfer, 

1269 computation power in terms of model training, validation or deployment in the real world. 

1270 Training machine learning models is computationally very expensive and the use of GPUs 

1271 results in large amounts of energy consumption. This raises the question of sustainability with 

1272 respect to the research being conducted. Various independent researchers training similar 

1273 models on the same datasets would result in a suboptimal use of resources. Energy 

1274 consumption may be reduced by training smaller models (from model pruning, or 
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1275 “distillation”) or by sharing models. There are options of cloud storage or cloud computations 

1276 (Aide et al., 2013) which could benefit from the usage of green data centres in remote 

1277 locations (Ministry of Local Government and Modernisation, 2021) that have green 

1278 infrastructure for energy production (through renewable energy sources) and are perhaps less 

1279 harmful to the environment rather than local GPUs or server solutions. 

1280 It is also important to think of low footprint, low power usage models and systems in real 

1281 world deployment for data collection or final deployment. Currently, many research studies 

1282 are applying automatic detection algorithms on data that were collected in the past. We, 

1283 however, anticipate that the field will move towards real-time algorithms which require 

1284 systems that consume less energy in comparison to modern GPUs. To achieve this, more 

1285 efforts are required within model compression, for these models to be embedded into small 

1286 devices during data collection or deployment in the field. 

1287 Automatic detection holds large opportunities for advances in the field of conservation and 

1288 welfare, and drawing on the domain knowledge of biologists not currently involved in 

1289 bioacoustics can open up new research directions. The advantages of processing large 

1290 amounts of acoustic data seem clear to those currently involved in the field, but the wider 

1291 biological community should be involved to find new fundamental research questions in the 

1292 field of ecology and evolution (Clutton-Brock & Sheldon, 2010; De Frenne et al., 2018), for 

1293 example around species occurrence (Sebastián‐González et al., 2015; Rice et al., 2021; 

1294 Sattar, 2023), population density (Marques et al., 2013b) and diversity (Kotera & Phillott, 

1295 2022), habitat use (Brookes, Bailey & Thompson, 2013; Kotila et al., 2023), phenology 

1296 (Dede et al., 2014; Monczak et al., 2017), and the early detection of invasive species (Juanes, 

1297 2018). Such questions offer opportunities for research into major conservation challenges like 

1298 biodiversity loss and the effects of climate change (Sugai & Llusia, 2019; Ross et al., 2023). 

1299 Presently, studies driven by existing bioacoustics practitioners mostly focus on occurrence, or 
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1300 spatial or temporal distribution of a single species, whereas the advancement of automatic 

1301 detection potentially allows for a focus on multiple species and to map biodiversity and 

1302 potentially the functioning of whole ecosystems (Ross et al., 2018). 

1303 Another example of how biologists and ecologists can steer the direction in which automatic 

1304 detection may be developed in the future is to identify research questions without current 

1305 technological solutions. For example, although detecting signs of poor animal welfare in 

1306 captivity has been the subject of many studies (Zhang et al., 2022; Mao et al., 2022), there 

1307 are comparably very few studies investigating the of wild animals (Mcloughlin et al., 2019). 

1308 This is surprising given the great potential acoustic monitoring of threatened species could 

1309 provide, for example on species’ reproduction, or social behaviour (Teixeira, Maron & 

1310 Rensburg, 2019; Greggor et al., 2021). 

1311 7. CONCLUSIONS

1312 7.1. Need for AD

1313 Automatic detection is no longer an optional capability in bioacoustics. Increasing data 

1314 volumes, the need for near real-time analysis, and the expanding range of questions that 

1315 biologists want to answer using passive acoustics mean that opening up the capabilities of 

1316 this promising technology require parallel new developments in the field of machine learning.

1317 7.2. Cooperation between disciplines

1318 Mature fields in machine learning, such as image or voice recognition, are not immediately 

1319 transferrable to automatic detection in bioacoustics. Close cooperation between biologist 

1320 practitioners and machine learning developers will help advance solution creation by (a) 

1321 enabling developers with an understanding of the problems facing bioacoustics practitioners, 
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1322 and (b) inform biologists what can and cannot be provided by the state of the art in machine 

1323 learning.

1324 7.3. Deep neural networks

1325 Despite this, impressive advances in machine learning, particularly deep neural networks, 

1326 hold out the potential for very significant developments that would cut processing time and 

1327 enable a new wave of bioacoustics applications.

1328 7.4. Development pipelines

1329 Application development pipelines are of necessity problem-specific, however, certain 

1330 guidelines and workflows (Section 4) should smooth the integration of solutions constrained 

1331 both by the biological features of the problem, and by the available machine learning 

1332 capabilities.
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