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Acoustic vs photographic monitoring of wolves: a methodological comparison of two 

passive monitoring techniques

Laura Garland, Andrew Crosby, Richard Hedley, Stan Boutin, Erin Bayne

Abstract

Remote camera traps are often used in large mammal research and monitoring programs because 

they are cost-effective, allow for repeat surveys, and can be deployed for long time periods. 

Statistical advancements in calculating population densities from camera trap data has increased 

the popularity of camera usage in mammal studies. However, drawbacks to camera traps include 

their limited sampling area and tendency for animals to notice the devices. In contrast, 

autonomous recording units (ARUs) record the sounds of animals with a much larger sampling 

area but are dependent on animals producing detectable vocalizations.  In this study, we 

compared estimates of occupancy and detectability between ARUs and remote cameras for gray 

wolves (Canis lupus, Linnaeus 1758) in northern Alberta, Canada. We found ARUs to be 

comparable to cameras in their detectability and occupancy of wolves, despite only operating for 

3% of the time that cameras were active. However, combining cameras and ARUs resulted in the 

highest detection probabilities for wolves. These advances in survey technology and statistical 

methods provide innovative avenues for large mammal monitoring that, when combined, can be 

applied to a broad spectrum of conservation and management questions, provided assumptions 

for these methods are rigorously tested and met.

Key words: Autonomous recording units, bayesian occupancy, camera traps, Canis lupus, gray 

wolf
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Introduction

Apex predators are often a priority for natural resource management and conservation. As 

such, necessary aspects of predator management include understanding predator ecology, 

behavior, and distribution patterns. However, carnivores are a challenge to study, because they 

occur in low densities across vast geographic ranges (Ausband et al. 2014; Brassine and Parker 

2015). With densities sometimes lower than 5/1000 km2 in the northern limits of their range, and 

territories that can cover hundreds or even thousands of square kilometers, the gray wolf (Canis 

lupus, Linnaeus 1758), is a classic example (Fuller et al. 2003; Marquard-Petersen 2012). 

Recent technological advances have improved our understanding of wolf ecology and 

distribution. However, these techniques can be expensive, logistically complex, inefficient, and 

may have negative effects on the health or behaviour of the animal (Mourão and Medri 2002; 

Brennan et al. 2013; Gable et al. 2018). Telemetry for example, requires an individual to be 

caught, fitted with a collar, and released, typically with the use of sedating drugs (Tuyttens et al. 

2002). Aerial surveys on the other hand are expensive and often result in underestimates when 

applied to enumerating populations (Schlossberg et al. 2016). Both telemetry and aerial methods 

have been shown to have negative effects on the target species. Whether aerial surveys are done 

via drones or aircraft, target animals’ stress often increases, and their behavior is altered, often up 

to several hours or days post-survey (Bleich et al. 1994; Fleming and Tracey 2008; Ditmer et al. 

2015; Christie et al. 2016; Brambilla and Brivio 2018). For example, Eurasian lynx (Lynx lynx, 

Linnaeus 1758) and mule deer (Odocoileus hemionus, Rafinesque 1817) changed their 

movement patterns post-capture (Moa et al. 2001; Northrup et al. 2014). Howl surveys, which 

introduce foreign howls by people or playbacks to elicit vocal responses from nearby individuals 
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or packs are labor-intensive and could disrupt the behavior and social interactions of canids and 

their neighbors (Suter et al. 2016). 

Non-invasive passive survey techniques, such as camera trapping and bioacoustic 

detectors, may provide cost-effective and efficient alternatives for monitoring species that have 

low detection probabilities when surveyed using more traditional sampling methods (Diggins et 

al. 2016; Buxton et al. 2018; Steenweg et al. 2018). Currently, the most popular methods of 

passively monitoring large mammals is remote camera traps (Karanth 1995; Kelly and Holub 

2008; Davis et al. 2018). Camera traps are used because of their ability to inexpensively survey a 

site continuously over a long time period and over large spatial extents simultaneously, with 

limited effects on the animals being studied (Burton et al. 2015; Newey et al. 2015). Camera data 

has been used to estimate  occupancy, abundance, activity patterns, behavior, habitat use, and 

population density  for several species, including wolves (Rowcliffe et al. 2008; Ausband et al. 

2014; Gray 2018; Mattioli et al. 2018). One shortcoming of camera traps is they only survey a 

small area directly in front of the camera lens. Low detectability of the target species can 

therefore be problematic with camera trap data, especially for species with low densities and 

large home ranges such as wolves. Animals may also respond to the light or sound produced by 

cameras, which can bias detection probabilities (Meek et al. 2016).

Acoustic monitoring via autonomous recording units (hereafter ARUs) is rapidly 

emerging as a tool for monitoring a wide array of vocal taxa (e.g. whales (Mellinger et al. 2007), 

bats (Clement et al. 2014), birds (Charchuk and Bayne 2017), insects (Mankin et al. 2011)). 

Acoustic monitoring confers several advantages over traditional survey techniques, including a 

permanent data record, and reduced observer bias (Shonfield and Bayne 2017). Recent studies 

have proposed that acoustic monitoring could offer advantages over camera surveys for wolves 
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(Suter et al. 2016; Papin et al. 2018). Wolf howls can be heard by neighboring wolves as well as 

humans at distances over 10 km, and recent estimates suggest they can be detected up to 4.6 km 

away by ARUs (Passilongo et al. 2015; Suter et al. 2016). However, ARUs have seldom been 

used to monitor wolves, presumably because of an assumed low howling rate and the time 

needed to process the data. Thus, it is not known how inferences regarding occupancy drawn 

from ARU data compare to those derived from cameras.

A crucial element of any occupancy study using passive monitoring devices is the 

definition of a sampling interval (Efford and Dawson 2012; Wilson and Schmidt 2015). 

Detectability estimates, and therefore estimated occupancy probabilities, may change depending 

on the length of time over which subsamples are divided, (e.g.: daily, weekly, or monthly 

intervals), regardless of what method is used (Efford and Dawson 2012; Steenweg et al. 2018). 

For example, if one detection at a single device occurs in 3 months of sampling, the naive 

detectability (and calculation of occupancy rates) will likely differ if the sample period is divided 

into days vs weeks vs months (1 detection in approximately 90 days (p=0.01, Ψ=0.34) vs 1 

detection in 12 weeks (p=0.08, Ψ=0.32) vs 1 detection in 3 months (p=0.33, Ψ=0.31)). 

Researchers or managers may form monitoring conclusions without thinking about how different 

temporal survey intervals influence inference about occupancy rates. To our knowledge, 

comparing detection and occupancy estimates between cameras and ARUs at varying sub-

sampling intervals has never been examined, despite the importance of this in defining what 

constitutes “occupancy” of a site, both at a spatial and temporal scale, for species monitoring and 

management (Efford and Dawson 2012).

Our goal was to compare the performance of ARUs and camera traps in estimating 

occupancy and detectability of gray wolves in northeastern Alberta under different sampling 
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designs. Our objectives were: 1) compare camera and ARU data processing time and sampling 

effort 2) compare detectability between ARUs and cameras—examining how differences in 

detection estimates change given variations in the definition of a sampling occasion; as well as 

compare differences if methods are pooled or combined in a multi-method analysis and 3) we 

used these results to outline suggestions for a sampling framework that incorporates ARUs in 

long-term wolf monitoring.

Materials and methods

Study area

Our study area was in the northeastern region of Alberta, Canada, primarily covering the 

Interior Plains, an area approximately 163,350 km2 in size with known wolf populations present. 

Specifically, our survey locations were north of Edmonton and east of the city of High Level 

(Figure 1). This region is characterized by a combination of boreal central mixedwood, upper 

and lower boreal highlands, and the Athabasca plain. Considered habitat generalists, gray wolves 

have a propensity to use both closed and open habitats throughout northeastern Alberta, 

including coniferous, deciduous, and mixed forests in addition to shrublands and wetlands 

(Benson et al. 2015; Uboni et al. 2017). 

Study design

 Working with the Alberta Biodiversity Monitoring Institute (hereafter the ABMI), we 

gathered camera and acoustic data during  March 1st – June 30th of 2016 and 2017 (Figure 1). 

The ABMI primarily researches a variety of species in Alberta, therefore this particular study 

design was aimed at passively surveying amphibians, songbirds, and mammals with temporal 

and spatial replication.  We paired cameras and ARUs at a station and a site consisted of four 
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stations spaced 600 m apart in a square (Figure 2).  We deployed sites in a systematic, 20 km 

grid across Alberta.

  We used RECONYX Hyperfire 900 cameras (RECONYX, Holmen, WI).  We 

programmed cameras to run 24 hours per day and cameras were motion-triggered to take photos 

continuously every second using an infrared trigger as long as the subject remained in the 

viewfinder.  We placed the cameras approximately 1m high on trees with the lenses facing north 

to avoid glare in the photos during sunrise and sunset. If necessary,  we cleared away vegetation 

that may have obstructed the camera viewfinder. 

For ARU surveys, we  used SongmeterSM3 and SM4 acoustic recorders (Wildlife 

Acoustics, Inc., Maynard, MA).  We deployed ARUs with the camera traps approximately 1.5 m 

tall on trees. If necessary, we  cleared away surrounding vegetation that may have obstructed or 

interfered with the ARUs’ recording abilities. We did not place the ARUs in any type of 

weatherproofing due to weatherproofing being built into their designs.  We set ARU units to 

record 38 minutes per 24 hours with a 44kHz sampling rate and no filtering. Continuous 

recordings occurred 30 minutes after sunrise for 13 minutes and for 6 minutes at noon to target 

songbirds, dusk for 6 minutes to record waterfowl and thrushes, and midnight for 13 minutes to 

target amphibians. Sunrise, dusk, and midnight hours are also times at which wolf vocal activity 

peaks year-round (McIntyre et al. 2017). As such, these recording schedules also allowed for 

spontaneous recordings of wolf vocalizations. SM4 units recorded in .wav and SM3 units 

in .wac, the latter being a type of lossless compression format. 

Data selection

We created three datasets to compare ARU detectability with that of cameras. For the 

first dataset, we selected all cameras that were deployed in 2016 and 2017 that included at least 
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one wolf detection to attain a baseline of camera detectability that we could then compare to 

ARUs. We constrained the sampling period of the cameras to that of the corresponding ARUs to 

only include detections during the time the ARUs were deployed, approximately March 1st – 

June 30th, across both years. If either the camera or paired ARU failed during the sampling 

period (i.e. stopped recording), we excluded all detections from the paired unit during the time of 

inactivity. We defined a “hit” as each unit’s first detection, and then the first photo or 

vocalization detected at least 12 hours since their last respective detection based on the minimum 

time between detections suggested by Rovero and Marshall (2009). This resulted in a total of 34 

and 39 unique camera stations with a wolf hit in 2016 and 2017, respectively (Table 1).

The second dataset was comprised of stations where cameras had not detected a wolf, to 

allow for the possibility that an ARU might still detect one. We selected the same number of 

stations in each year (2016, n=34; 2017, n=39) where camera detections were zero, and 

processed the corresponding ARUs for wolf vocalizations (Table 2). The definition of a wolf 

“hit” remained the same as the previous comparison—a minimum of 12 hours between each 

detection.

Finally, we created a third dataset by randomly selecting one of the four stations at each 

of the sites represented in the first two datasets (N=69) (Figure 1). By ensuring each station was 

drawn from a different site in this dataset, we guaranteed each station was at least 20 km from all 

others.

Data processing

Camera trap species identification was done by technicians experienced in mammal 

identification and trained via a step-wise process according to tagging protocols established by 

the ABMI. Technicians recorded the scientific and common names of species in addition to the 
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location identifier, camera identifier, date and timestamp, latitude, longitude, number of 

individuals, sex, and approximate age (if possible). Individuals were not identified using this 

method. For the purposes of our occupancy analysis, we considered photos taken 12 hours after 

the first photo to be independent samples, which is consistent with Rovero and Marshall (2009), 

who suggested a time of at least 60 minutes between capture events.

We used the program Sound eXchange (SoX) version 14.4.2 to process ARU data 

(Bagwell et al. 2013, SoX, http://sox.sourceforge.net). This program creates spectrograms from 

audio data based on the parameters specified by the user. To view wolf vocalizations, we used 

the sox function in the package ‘seewave’ in R version 3.3.1 (Sueur et al. 2008; R Core Team 

2018), to convert raw audio files into 1-minute spectrograms. We truncated spectrograms from 

the original 44 kHz sampling rate to a 7 kHz sampling rate, and we used the standard colors 

provided by SoX to detect individual howls, responses, and choruses in each recording (Figure 

3). We truncated the spectrograms because wolves have a low frequency howl, ranging 

approximately from 0.274 kHz (274 Hz) to 0.908 kHz (908 Hz) in fundamental frequency 

(Passilongo et al. 2010). All ARU data processing was completed by the same researcher. We 

built a call library, and the researcher was given a sample dataset from the call library to practice 

their identification skills. In cases where the identity of a vocalization was uncertain, the 

researcher listened to the recording to confirm species identification. 

Processing time and sampling effort

To address our first objective to compare camera and ARU processing time and sampling 

effort, the researcher processing the audio data tracked the time it took to visually scan each 

station from the SoX output. We estimated the average time it took to scan all 146 stations and 

compared this processing time to the average camera processing time used by the ABMI.
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Sampling effort

To examine how sampling effort between ARUs and cameras influenced our results, we 

used the stations from the first dataset that had known camera wolf detections (n=73) during 

March 1st – June 30th of 2016 and 2017. We did not match the exact dates of paired ARU and 

camera activity, instead viewing sampling effort based on the individual devices. 

We defined a single “hit” for both cameras and ARUs as any wolf image or vocalization 

captured per minute between March 1st and June 30th, 2016 and 2017. For example, if three lone 

howls were detected in a single minute of ARU recording time, we counted that as a single 

detection. Additionally, if three images of a wolf were captured successively by a camera within 

the same minute, we also counted that as a single detection. 

Occupancy analysis

To meet our second objective of comparing detection probabilities between ARUs and 

cameras, we used single season occupancy models (MacKenzie et al. 2002) using detection 

histories with varying sampling intervals.

The assumptions of a single-season occupancy model are occupancy of a site remains 

closed during the sampling season (i.e., individuals do not immigrate or emigrate from the 

sampling site during the sampling season), detection between sites are independent of each other, 

and the probability of occupancy and detection are equal across sites (MacKenzie et al. 2002). 

Our definition of a site was each group of four, paired cameras and ARUs spaced 600 meters 

apart, with our sampling unit constituting a single camera and a single ARU selected per site. We 

assumed site closure at the scale of wolf territories, because the detection zone for both cameras 

and acoustics is significantly smaller than a wolf’s home range, we assumed at least one site was 

placed in a pack territory. We assumed that wolf occupancy of sites remained closed during the 
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sampling period because wolves tend to occupy the same territories for long time periods, 

particularly during the pup-rearing season (spring-summer) (Jedrzejewski et al. 2001; Rio-Maior 

et al. 2018). Detectability between sites was not completely independent because wolves can 

travel up to 20 km in a day (Scurrah 2012; Ehlers et al. 2014; Latham et al. 2014). However, the 

sites were spaced far enough apart that if a wolf howled, it would not be detected by more than 

one ARU at a time (Passilongo et al. 2010). We expected wolf movement to be random relative 

to the camera-ARU site, therefore we did not expect strong biases in occupancy or detection 

estimates between sites (Kalan et al. 2015). The purpose of this paper was to examine the 

detectability of ARUs relative to cameras. Therefore, we were not overly concerned with the 

precision of the occupancy and detection probabilities as they apply to estimating wolf 

abundance or distribution, instead we focused on examining the similarity or differences in 

detection estimates based on the method employed.

We used the third dataset of 69 paired stations, where one station was randomly selected 

per site from the 146 processed stations to do this analysis. To understand how individual 

detection probabilities varied between ARUs and cameras, as well as how detectability changes 

with various sampling intervals, we ran occupancy models for each method separately using 

daily (120 survey events), weekly (17), and monthly (4) detection histories.

Additionally, we compared detection and occupancy estimates when the methods were 

pooled as well as through a multi-method approach. For the pooled analysis, we combined 

camera and ARU detections (given both units were functioning throughout the survey period), if 

either unit detected a wolf, it was entered as “1” for that sampling occasion. For example, if a 

camera had a detection history of {001} and the paired ARU had a detection history of {100}, 

the resulting combined detection history would be {101}.

Page 11 of 40

https://mc06.manuscriptcentral.com/cjz-pubs

Canadian Journal of Zoology



Draft

12

We also combined both units’ detection histories in a multi-method approach to assess an 

additional variable, θx, which is the probability of an individual being available for detection 

using method x, given an animal’s presence. Therefore, a wolf that is detected by a camera will 

be within the detection zone of an ARU, but the reverse may not be true, which the multi-method 

approach accounts for. The multi-method approach also calculates ψ, as well as pxi, or the 

probability of detecting an individual using method x in survey i. (Nichols et al. 2008).

Lastly, we examined how the efficacy of cameras and ARUs might change seasonally. 

We ran occupancy models for both cameras and ARUs at the weekly interval using week as a 

covariate of detection probability. Typically, the longer a unit is deployed, it is expected that 

their detection probabilities will increase (MacKenzie et al. 2002). However, when the Canadian 

boreal forest is transitioning from winter to spring and summer months, green up of the 

vegetation and summer rains may decrease the detection zone and impact detection rates due to 

false triggers (Norton et al. 2000; Efford and Dawson 2012).

Bayesian framework

We estimated occupancy and detectability using a Bayesian framework in JAGS version 

4.3.0 (Plummer 2003) via the R package R2jags (Su and Yajima 2015). We used uninformative 

prior distributions for all estimated variables, where priors for occupancy and detection 

probabilities were uniformly distributed between 0 and 1, and the prior on detection coefficients 

was normally distributed between 0 and 0.01. We ran 3 chains, of 3,000 iterations, a burn-in of 

500 iterations, and a thinning rate of 5. We assessed convergence of the MCMC chains using the 

Gelman and Rubin R-hat diagnostic (Brooks and Gelman 1998).1

Multi-method occupancy analysis

1 See supplementary materials for model code.
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To examine multi-method occupancy and detectability, we used the program Presence 

version 12.23, as it integrates the methods proposed by Nichols et al. (2008). We collapsed the 

datasets by daily, weekly, and monthly intervals. In Presence, we ran a maximum likelihood 

occupancy model accounting for two detection methods at every survey interval, and estimated 

values for ψ, pxi, and θx.

Results

Across the three datasets, we detected wolves at 111/146 (76%) of stations via ARUs 

and/or cameras. ARUs detected wolves at 46/73 (63%) of stations in the first dataset, which was 

drawn from stations at which cameras had detected a wolf. ARUs detected wolves at 38/73 

(52%) of stations in the second dataset, which was comprised of stations at which cameras had 

not detected a wolf. ARUs detected wolves at 39/69 (57%) of stations in the third dataset, which 

was comprised of a mix of stations with and without camera detections.

Processing time

The average processing time for an ARU that recorded 38 minutes per day over 4 months 

(approximately 4500 one-minute spectrograms), varied depending if the recordings were made 

in .wac or .wav format. To create the spectrograms, .wac files first had to be converted to .wav, 

which typically increased the length of processing 1.5 times. However, opening R and initiating 

the SoX program per ARU took less than 2 minutes to complete. Creating 4500 1-minute 

spectrograms from .wav files took approximately two hours on an i-7 2400K at 3.40 Ghz with 

16GB RAM computer running Windows 7 64-bit. Processing 4,500 1-minute spectrograms from 

a recording station took an experienced researcher less than an hour (52 ± 16 minutes). 

Researchers tagging camera photos were able to process about 2000 photos per hour, on average 

(Corrina Copp, personal communication, 2018). Since camera stations recorded an average of 
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2349 photos per station over the deployment period, we estimate that processing one station 

would take slightly over one hour.

Sampling effort

Across 73 cameras deployed in 2016-2017, if every single unit was operating perfectly 

across the sampling period (i.e., 24 hour sampling effort), this would result in approximately 

8906 days of continuous sampling. The actual days sampled (due to late start times or units 

failing early) was closer to 8064 days across both years. In contrast, if all 73 ARUs had been 

functioning perfectly during the sampling period, this would have resulted in 235 days of 

continuous sampling. (i.e. 38 minutes/24 hour sampling). Again, due to units failing early or 

being deployed late, the total days recorded between 2016-2017 were 222 days. 

Throughout the sampling period from March 1st – June 30th, there were 254 wolf hits 

across 73 cameras and 309 wolf hits across the 73 ARUs (Table 3). Overall, 46/73 (63%) of the 

selected stations had at least one wolf vocalization recorded. Cameras had a hit rate of 0.029 

hits/day, while ARUs had a hit rate of 1.440 hits/days, about fifty times higher than cameras. 

Occupancy analysis and detectability for individual units

Detection probabilities derived from ARUs in the third dataset were comparable to 

detection probabilities from cameras, regardless of the temporal resolution of sampling. At the 

daily interval, camera and ARU detection probabilities were equal (pARU =0.033, 95% credible 

interval=0.022-0.047, pCamera =0.030, 95% credible interval=0.024-0.050), but occupancy 

estimates from ARUs were double those of the cameras (ΨARU =0.623, 95% credible 

interval=0.441-0.842, ΨCamera=0.304, 95% credible interval=0.165-0.561). At a weekly sampling 

interval, ARU detectability was higher than cameras (pARU =0.105, 95% credible interval=0.078-

0.133, pCamera=0.083, 95% credible interval=0.059-0.111), but both units’ individual occupancy 
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estimates were approximately equal (ΨARU =0.652, 95% credible interval=0.499-0.913, ΨCamera 

=0.643, 95% credible interval=0.481-0.858). Lastly, at the monthly interval, ARU detectability 

was again higher than cameras (pARU =0.296, 95% credible interval=0.213-0.383, pCamera =0.233, 

95% credible interval=0.155-0.326), but their occupancy estimates were roughly equal (ΨARU 

=0.752, 95% credible interval=0.569-0.945, ΨCamera=0.761, 95% credible interval=0.117-0.978). 

As the 95% credible intervals for ARU and camera detection probability always overlapped, 

neither method is statistically more significant in its ability to detect wolves.

Occupancy analysis and detectability for pooled and multi-method units

Pooled estimates were higher than either individual unit’s individual probabilities, but 

were lower compared to the multi-method estimates that accounted for individual unit 

detectability given animal presence and availability for detection. The pooled estimates were as 

follows: daily (pPooled =0.047, 95% credible interval=0.034-0.062, ΨPooled =0.548, 95% credible 

interval=0.388-0.727), weekly (pPooled =0.153, 95% credible interval=0.125-0.180, ΨPooled =0.766, 

95% credible interval=0.650-0.807), and monthly (pPooled =0.443, 95% credible interval=0.362-

0.525, ΨPooled =0.782, 95% credible interval=0.651-0.905). Multi-method estimates, particularly 

detection probabilities, were higher than the pooled estimates, but occupancy estimates were 

similar at both the weekly and monthly intervals. At the daily interval, the units’ multi-method 

detectability increased (θMulti=0.267, 95% confidence interval=0.092-0.569), as did their 

occupancy estimates (ΨMulti=0.742, 95% confidence interval=0.641-0.838), relative to pooled 

methods. The multi-method detectability at the weekly interval was higher than the pooled units 

(θMulti=0.698, 95% confidence interval=0.228-0.948), but both occupancy estimates were similar 

(ΨMulti =0.757, 95% confidence interval=0.624-0.855). The multi-method monthly detectability 

was again higher than the pooled estimates, but their occupancy estimates were again, similar 
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(θMulti=0.829, 95% confidence interval=0.360-0.977, ΨMulti=0.800, 95% confidence 

interval=0.635-0.902).

Variation in detectability based on survey period

ARUs and cameras increased their detectability and occupancy estimates as the survey 

period length increased from daily to monthly, both individually and when the methods were 

pooled or used in multi-method analysis. The greatest discrepancy occurred between weekly and 

monthly sampling intervals when detectability more than doubled for individual units, increased 

by 29% for the pooled methods, and increased by 20% in the multi-method analysis. Occupancy 

estimates also increased by approximately 10% across all comparisons between weekly and 

monthly estimates. The differences in detectability and occupancy estimates between daily and 

weekly intervals was much smaller across the board, except for cameras doubling in their 

occupancy estimates between daily and weekly periods.

When week was included as a continuous covariate of detection probability at the weekly 

sampling interval, we observed a decrease in detectability in both cameras and ARUs (Figure 4) 

over time. Cameras were 0.747 (95% credible interval=0.006-0.999) times as likely to detect a 

wolf for every additional week they sampled while ARUs were 0.999 times as likely to detect a 

wolf per week (95% credible interval=0.978-0.999).

Discussion

We found that ARUs had equivalent or higher detection probabilities than cameras, 

regardless of the sampling interval used, even though ARUs recorded on a far sparser schedule. 

This indicates that ARUs may be a viable passive alternative to monitoring wolf populations. 

The discrepancy in occupancy estimates is explained in part by differences in the detection area 

of the methods, with cameras having a drastically smaller detection area than ARUs. Under ideal 
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conditions, (ie: open habitat, no inclement weather), Reconyx advertises their cameras as having 

a 30 m detection radius and 42° interior angle (Reconyx 2017), for an approximate sampling area 

of 0.00033 km2 for a single camera. Work completed by Suter et al. (2016) found that harmonics 

of captive wolf howls were easily detected from a recording distance of 3.6 km and trace howls 

were still detectable from a recording distance of 4.62 km on ARUs. A conservative detection 

radius of 3 km results in a detection area of approximately 28 km2 for a single ARU. Given this 

discrepancy, the probability of a wolf being detected by a camera in an area it is occupying is 

much lower than the same wolf being detected by an ARU. Granted, the detection area for the 

ARU is dependent on habitat type and the distance of the wolf from the ARU. Increasing 

distance from the ARU lowers detectability, in addition to dense forest or vegetation also altering 

the transmission of sound waves (Yip et al. 2017). Additionally, detection rates from ARUs may 

be more vulnerable than cameras to weather variables, especially wind and rain, decreasing the 

acoustic detection areas during certain weather events, and therefore potentially resulting in 

lower detection rates depending on survey length. Overall, the detection areas of ARUs is likely 

to be more variable than cameras depending on the habitat they are placed in but this requires 

further investigation. These limitations are similar to cameras in their ability to capture images 

within the range of the viewfinder, dependent on animal positioning relative to the camera and 

the surrounding vegetation influencing detectability (Efford and Dawson 2012; Burton et al. 

2015). Wind speeds can be approximated from an ARU based on noise level and thus corrected 

for or alternatively, they can be included as detection variables in occupancy modeling. Efford 

and Dawson (2012) point out that undefined or varying detection areas of passive recording 

devices, coupled with unknown or varying home range sizes of the target species, will have 

important impacts on estimates of occupancy. Therefore, because both methods are influenced 
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by weather and vegetation variables, further comparisons of absolute versus the relative error of 

these detection methods should be done. If passive methods like cameras and ARUs are to be 

applied to monitoring programs, it is necessary that detection areas be considered, particularly 

how detection areas are influenced by variables such as vegetation, weather, and background 

noise that may affect detectability and therefore estimates of occupancy (Efford and Dawson 

2012).

ARUs, and to a lesser extent cameras, decreased in their individual probabilities of 

detection for each additional week the units were operating. This decline in detectability is likely 

explained in part by decreased movement and possibly vocal activity post-breeding (Finďo and 

Chovancová 2004; McIntyre et al. 2017). Decreased movement during the summer is primarily 

attributed to the presence of pups at dens or rendezvous sites, and to a lesser degree because 

wolves do not need to range as far in search of prey. (Find’o and Chocancová 2004). Wolves are 

known to vocalize more often in the months leading up to breeding, with a drop-off in vocal 

activity observed in the months following when pups are born. This drop in vocalization may be 

the result of decreases in hormone levels in wolves that resulted in increased aggression and 

howling behavior pre-breeding and during the breeding season. (Kreeger 2003; McIntyre et al. 

2017). Green-up of vegetation as the summer progresses also might influence camera and ARU 

detectability both visually and acoustically. Although the reason for the change in detection 

probability is unknown in our dataset, it seems that if resources are constrained, monitoring 

should be conducted early in the season (March-April), as this is when wolves were most 

efficiently detected, and because these months indicate a higher vocalization rate before 

dropping in the later spring and early summer months (McIntyre et al. 2017).
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Given that ARUs and cameras did not have perfect detectability at every site, when the 

methods were combined in the multi-method occupancy estimates, the resulting detection 

probabilities resulted in improved wolf detectability across each site. Therefore, despite ARUs 

performing slightly better in terms of their detectability of wolves over cameras, a multi-method 

approach would likely be the most accurate for long-term wolf monitoring. Additionally, the 

incorporation of spatial modeling of pack territories and seasonality of pack movement would 

greatly improve our predictions of when and where on the landscape wolves are. This would 

allow for improved precision and accuracy in our occupancy analyses using passive monitoring 

methods. This aligns with the current popularity of multi-method approaches to monitor rare 

species or trends in biodiversity patterns across regions (O’Connell Jr. et al. 2006; Nichols et al. 

2008). 

We observed an increase in both detectability and occupancy of wolves as the length of 

our sampling intervals increased. The greatest differences were seen in the multi-method 

estimates, with detectability increasing by 43% between daily and weekly intervals, and 13% 

between weekly and monthly periods. The variation in detectability seen across the three 

sampling intervals can affect monitoring and management conclusions made by researchers, 

depending on the goal of their projects. For example, detecting a wolf at a camera-ARU site 

twice in two weeks or 14 times in two weeks may result in different conclusions if the surveys 

are defined as daily or collapsed into weekly intervals. This is particularly important when 

comparing across studies. To simply determine species presence-absence, the heterogeneity 

across survey periods may not pose an issue. However, if the goal is to determine long-term 

trends in habitat use, species’ distributions, or species’ abundance, then determining the 

appropriate temporal scale of the sampling interval needs careful consideration. 
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Technical ARU adjustments

There are several adjustments that can be made to ARUs to increase their recording 

capacity and better target wolf vocal activity. These include compressing the audio formats to 

allow for increased storage of audio data and lowering the bit rate and sampling rate of the 

recordings. Bit rate is defined as the amount of data, or bits, that are transferred per unit time, 

typically measured in seconds. Higher bit rate, although it increases the quality of the recording, 

also increases the file size, thus increasing the space taken up per SD card. Therefore, we suggest 

a 16-bit rate for recording wolf vocalizations in long-term studies as this can maximize available 

memory space. Additionally, the sampling rate, or the number of samples taken per second of an 

audio recording, can be adjusted based on the vocal frequency of the target species. In ARUs, the 

sampling rate can be as low as 8 kHz, with frequencies recorded up to half of the sampling rate. 

Free ranging wolf howls range from approximately 0.274 kHz (274 Hz) to 0.908 kHz (908 Hz) 

in fundamental frequency (Passilongo et al. 2010). Therefore, 8 kHz would suffice for recording 

wolf howls while reducing storage needs.

By adjusting ARU sampling rate, bit rate, and compression formats, there is potential for 

ARUs to record at a daily rate similar to cameras. Although this would produce many hours of 

data that would be impractical to sort manually, automated processing methods may be helpful 

(Knight et al. 2017).

Wolf monitoring framework incorporating ARUs

Monitoring programs frequently rely on multi-method approaches to achieve their 

management or conservation goals (O’Connell Jr. et al. 2006; Ausband et al. 2014; Buxton et al. 

2018). Already, camera traps and ARUs are being compared for their efficacy to monitor deer, 

whales, and elephants (Enari et al. 2017; Rayment et al. 2017; Wrege et al. 2017), and these 
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methods are also used to assess human impact on several species (Horton et al. 2015; Robinson 

et al. 2015). This expansion into multi-method monitoring practices using both cameras and 

acoustics opens up several avenues of research questions ranging from development of hardware 

(e.g. improving the range of camera detection zones or ARU microphones), software (e.g. 

automated recognition programs for both methods), as well as animal ecology (e.g. seasonality of 

movement and vocal activity, predator-prey interactions).

With our comparison of ARU detectability to cameras in a Bayesian occupancy 

framework, in addition to the adjustments that can be made to ARU settings and an efficient way 

to process the audio data via SoX, it is feasible to use paired cameras and ARUs for additional 

studies, such as behavior, habitat use, and possibly even to measure breeding status of wolves 

(Palacios et al. 2016). Additionally, there are a lack of detailed studies assessing wolf howl rates 

(McIntyre et al. 2017), despite the importance of vocalizations as a form of communication for 

both inter- and intra-pack interactions (Nowak et al. 2007; Palacios 2016). The ability to 

passively capture daily and weekly howling behavior to answer questions related to vocal rates is 

now possible with ARU technology. Seasonal behavior as well, based on monthly howl rates, 

allows researchers to now map long-term trends in howling activity.

Research in recent years has established that the number of howling members in wolf 

packs can be counted based on individual vocalizations (Passilongo et al. 2015; Palacios et al. 

2016). With this information, combined with year-round recording capabilities using both 

cameras and ARUs, there is the potential to answer several questions ranging from individual 

morphology and identification, density estimates, howling rates, habitat use, community-level 

interactions, establishing trends in behavior, and breeding status are all possible, without the 

need for invasive techniques.
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Table 1. Total number of cameras deployed by the Alberta Biodiversity Monitoring Institute 

(ABMI) in northeastern Alberta, Canada during the summers of 2016 and 2017 with at least one 

gray wolf (Canis lupus) detection between March 1st – June 30th, as well as the paired 

autonomous recording unit (ARU) detections that were processed retrospectively (n=73).

2016 Unique Stations Unique Sites Hits
Camera 34 27 55

ARUs with wolf detections 19 15 39
Proportion (ARU/Camera) 0.558 0.571 0.709

2017 Unique Stations Unique Sites Hits
Camera 39 31 71

ARUs with wolf detections 27 24 97
Proportion (ARU/Camera) 0.692 0.774 1.366
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Table 2. Comparison of stations deployed between March 1st – June 30th in 2016 and 2017 by 

the Alberta Biodiversity Monitoring Institute (ABMI) where autonomous recording units (ARU) 

detected wolves (Canis lupus) but cameras did not (n=73).

Unique Stations Unique Sites
Total 73 57

ARUs with wolf detections 38 29
Proportion 0.521 0.509
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 Table 3. Occupancy (Ψ) and detectability (p) estimates of gray wolves (Canis lupus) from 

cameras and ARUs deployed by the Alberta Biodiversity Monitoring Institute in northeastern 

Alberta between March 1st – June 30th in 2016 and 2017 using daily, weekly, and monthly 

detection intervals and 95% credible intervals.

Interval Estimates Camera 95% Cred Int ARU 95% Cred Int

Daily p 0.030 0.024, 0.050 0.033 0.022, 0.047

Ψ 0.304 0.165, 0.561 0.623 0.441, 0.842

Weekly p 0.083 0.059, 0.111 0.105 0.078, 0.133

Ψ 0.643 0.481, 0.858 0.652 0.499, 0.813

Monthly p 0.233 0.155, 0.326 0.296 0.213, 0.383

Ψ 0.761 0.117, 0.978 0.752 0.569, 0.945
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Figure 1. Terrestrial sites deployed by the ABMI in Alberta, Canada, between the summers of 

2016 – 2017 mapped using ArcMap v10.4.1 (Environmental Systems Research Institute, 

Redlands, CA, USA). Each black triangle represents a site composed of four, paired camera-

ARU stations deployed by the ABMI between March 1st – June 30th, 2016-2017. Gray circles 

indicate those sites that we randomly selected for occupancy analysis (N=69). These site 

locations are based on the publicly available latitude and longitudes produced by the ABMI, and 

do not represent actual locations.

Figure 2. Sampling design of a site and station deployed in Alberta, Canada between March 1st – 

June 30th 2016 and 2017, determined by the Alberta Biodiversity Monitoring Institute (ABMI). 

Four, paired cameras and autonomous recording units (ARUs) are deployed at a site, each pair 

making up a station. Each station is 600 meters distant in the shape of a polygon to create a site. 

Each site is at least 20 kilometers away from the nearest neighboring site.

Figure 3. Example of a gray wolf (Canis lupus) vocalization image output by SoX version 

14.4.2. The y-axis is the frequency range in kHz, the top half representing the first channel and 

the bottom half the second channel from the ARU. The x-axis is marked in seconds, and the 

dBFs scale indicates the amplitude of the recording. The spectrogram itself shows a lone wolf 

howling twice approximately 10 seconds apart.

Figure 4. The effect of week on the probability of gray wolf (Canis lupus) detections for 

cameras and autonomous recording units (ARUs) over 17 weeks of deployment in northeastern 

Alberta, Canada between March 1st – June 30th 2016 and 2017. Error bars represent 95% credible 

intervals.
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