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Adaptive mechanisms facilitate robust
performance in noise and in reverberation
in an auditory categorization model
Satyabrata Parida 1,2, Shi Tong Liu3 & Srivatsun Sadagopan 1,2,3,4✉

For robust vocalization perception, the auditory system must generalize over variability in

vocalization production as well as variability arising from the listening environment (e.g.,

noise and reverberation). We previously demonstrated using guinea pig and marmoset

vocalizations that a hierarchical model generalized over production variability by detecting

sparse intermediate-complexity features that are maximally informative about vocalization

category from a dense spectrotemporal input representation. Here, we explore three biolo-

gically feasible model extensions to generalize over environmental variability: (1) training in

degraded conditions, (2) adaptation to sound statistics in the spectrotemporal stage and (3)

sensitivity adjustment at the feature detection stage. All mechanisms improved vocalization

categorization performance, but improvement trends varied across degradation type and

vocalization type. One or more adaptive mechanisms were required for model performance

to approach the behavioral performance of guinea pigs on a vocalization categorization task.

These results highlight the contributions of adaptive mechanisms at multiple auditory pro-

cessing stages to achieve robust auditory categorization.
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To maintain robust auditory perception, especially of com-
munication sounds such as vocalizations (calls), animals
and humans must generalize over the tremendous varia-

bility in the production of these sounds and the variability
imposed by the listening environment. Production variability
includes both trial-to-trial and subject-to-subject variability that
is inherent in sound production. Environmental variability refers
to a variety of acoustic degradations such as the addition of
background noise and reverberation. Call categorization thus
requires a many-to-one mapping operation, where diverse
acoustic inputs are mapped onto a small number of behaviorally
relevant categories. How this categorization operation is imple-
mented by the neural circuitry of the auditory system is a central
question in auditory neuroscience. Existing auditory encoding
models are not well-suited to address this question. For example,
many auditory pathway models adopt an engineering approach,
and process inputs using experimenter-defined spectral, temporal,
or modulation filter banks, which are biologically inspired;1,2

however, these models focus on stimulus encoding and have not
been tested in categorization tasks. Another class of models,
which are based on deep neural networks, can achieve robust
auditory categorization performance that can approach human
performance levels3,4. However, these complex networks offer
limited biological interpretability, and an intuitive understanding
of what stimulus features are used to generalize over a given
category, and how these stimulus features are biologically com-
puted, is elusive. Additionally, the latter class of models requires a
large amount of training data (typically of the order of millions of
data points). To strike a balance between biological interpret-
ability and categorization performance, we have previously pro-
posed a hierarchical model that learns informative, intermediate-
complexity features that can generalize over within-category
variability and accomplish categorization5. This model can
achieve robust production invariance with a limited training set
(of the order of hundreds of data points). However, in its simplest
implementation, model performance degrades when environ-
mental variability is introduced to model inputs. In the present
study, we characterize model performance for a few common
types of environmental degradations and extend the model to
include several adaptive neural mechanisms that may aid auditory
categorization in such conditions.

The hierarchical model consists of three stages (Fig. 1). The
first stage is a dense spectrotemporal representational stage,
which is the output of a phenomenological model of the cochlear
filter bank6. The second stage consists of a set of sparsely active
feature detectors (FDs). Each FD has a spectrotemporal receptive
field (STRF), which corresponds to the stimulus feature that the
FD is tuned to detect, and a static output nonlinearity (threshold).
Optimal feature tuning for performing specific call categorization
tasks, and optimal thresholds to maximize classification perfor-
mance, are learned using greedy search optimization and
information-theoretic principles5. Optimal FDs typically exhibit
bandwidths of around 2 octaves and durations of around 200 ms,
and are thus tuned to detect spectral structures and temporal
sequences of this scale in the stimuli. The final ‘voting’ stage of
the model obtains the evidence for the presence of a call category
by combining the outputs of each category’s FDs, weighted
appropriately. Note that, to output the final call category in a go/
no-go paradigm, the voting stage can be implemented as a
winner-take-all algorithm7. The temporal sequencing of
the detected features, which may be important for selectivity for
longer time scale (> 200 ms) stimulus variations, is presently not
considered in the model. We have previously shown that this
hierarchical framework can achieve high accuracy in categorizing
calls across multiple species, and that model performance in
categorizing natural and manipulated guinea pig (GP) calls

mirrors GP behavior7. In addition, we showed that in guinea pigs
(GPs), subcortical and layer 4 neurons in the primary auditory
cortex (A1) show simple frequency-tuned receptive fields and
dense activities consistent with the spectrotemporal representa-
tion stage of the hierarchical model, whereas layer 2/3 neurons in
A1 show complex feature-tuned receptive fields and sparse
activities consistent with the FD stage8. This observation is con-
sistent with other studies that suggest that receptive field com-
plexity increases between A1 layer 4 and layer 2/38–10, and that
sound category information may be encoded by neurons in the
superficial layers of A111,12.

But the model is explicitly trained to generalize over produc-
tion variability in calls, which can be conceptualized as spectro-
temporal variations (limited by biological constraints) around an
archetypal call for each category. This variability occurs on a trial-
to-trial time scale. In contrast, environmental variability is not a
function of call type, is not limited by biological capabilities, and
typically varies at longer time scales. Thus, the fundamental
strategy employed by the model to generalize over production
variability, that of detecting informative features, is unlikely to
also confer resilience to environmental variability. Therefore, in
this study, we characterized model performance in two challen-
ging conditions: with additive white Gaussian noise and in
reverberant settings. We found that the basic model failed to
generalize over these forms of environmental variability. There-
fore, we extended the model to include several neural mechan-
isms that are known or have been hypothesized to improve neural
coding in degraded environments. First, condition-specific
training can improve the performance of computational
models13,14 as well as humans and animals15. We implemented
condition-specific training by augmenting the training data set
with degraded calls (i.e., calls that were affected by noise and/or
reverberation). Second, contrast gain control, which refers to
adaptive changes to neural tuning and activity levels to match
incoming sound statistics, has been demonstrated in several sta-
tions along the ascending auditory pathway16–22. We imple-
mented a version of contrast gain control by adapting neural
responses in the dense spectrotemporal stage to the mean and
standard deviation of population activity in that stage. Finally,
recent studies have shown that attention-mediated feedback can
control the excitability of cortical neurons to aid performance in
challenging listening environments23,24. Specifically, arousal-
related noradrenergic input from locus coeruleus25,26 as well as
cholinergic inputs from the basal forebrain27–29 can increase the
excitability of cortical principal neurons, typically by disinhibiting
them by suppressing the activity of cortical inhibitory interneuron
subtypes30. We modeled one possible implementation of this top-
down pathway, by altering FD thresholds to modulate FD
excitability. While all three mechanisms generally improved
model performance both in noise and in reverberation, the trends
of benefit varied across degradation type (noise or reverberation)
as well as call type, which suggests that the auditory system may
differentially rely on these mechanisms based on the degradation
type and the spectrotemporal properties of the sound. These
results demonstrate that multiple adaptive mechanisms acting at
multiple auditory processing stages are necessary to achieve
robust auditory categorization.

Results
The computational mechanisms described in this manuscript
extend a previously published model of auditory categorization5.
For ease of reading, we begin by briefly summarizing the core
details of this model (also see Methods). Model feature detectors
(FDs) were trained to optimally categorize one conspecific call
type (within-class) from all other call types (outside-class). To do
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so, a large number of random features, which served as candidate
STRFs that the FDs might detect, were first generated by ran-
domly selecting small portions of within-class cochleagrams with
random center frequency, bandwidth, onset time, and duration.
For each candidate FD, an incoming cochleagram was convolved
with its STRF (restricted to the bandwidth of the STRF) to obtain
the membrane potential response (or Vm response). The max-
imum of the Vm response was compared with the FD’s threshold
(learned as described next) to obtain the FD binary response or
FD output, where FD output= 1 if the maximum of Vm response
≥ threshold. To learn the FD threshold, we first constructed
distributions of its Vm response maximum for within-class calls
as well as outside-class calls and set the FD threshold to the value
that maximized classification merit, as quantified by the mutual
information between the stimulus class and the FD output. The
FD weight was set to the log-likelihood of classification. From this
initial set of ~5000 candidate FDs, we employed an iterative
greedy search algorithm31 to obtain the most informative set of
features (MIF set) for the categorization of each call type. To do
so, we sequentially added candidate FDs to the MIF set as long as
candidate MIFs were not similar (in an information-theoretic
sense) to existing members of the MIF set and the classification
performance of the MIF set continued to improve. In the final
voting stage, outputs of FDs in the MIF set were weighted (by the
learned weight) and summed to obtain the final output of the
categorization model. Five separate instantiations of models (with
non-overlapping MIF sets) were trained for each call type to
assess training convergence and performance reliability. Models
were tested using a new set of within-class and outside-class call
types that were not used in training and model performance was
quantified using the sensitivity index d prime (d’).

Model performance was quantified for categorizing calls from
two different species: marmosets and guinea pigs (Fig. 2). Target

marmoset calls consisted of the twitter, trill, and phee calls. All
three marmoset calls shared similar long-term spectra but varied
in their short-term spectrotemporal properties32 (e.g., frequency
versus amplitude modulation). Target guinea pig calls consisted
of the chut, wheek, rumble, and whine calls. The guinea pig calls
varied in both their long-term spectra (e.g., the wheek had higher
frequency content than the others) as well as in other spectro-
temporal properties33. While vocalization recordings from each
species typically had high (>15 dB) SNR, recordings contained
some colony noise, which had low-pass spectra. As colony noise
affected all call types of either species similarly, it is unlikely to
systematically affect the results presented here (other than per-
haps leading to slightly poorer categorization performance).
Therefore, we did not use any filters to denoise the recordings.
The performance of various models was tested in several noisy
and reverberant (e.g., Fig. 2) conditions. For noisy conditions, we
added white Gaussian noise down to signal-to-noise ratios
(SNRs) of −18 dB. For reverberant conditions, we convolved calls
with impulse responses obtained from four environmental
recordings and four simulated room reverberations (Supple-
mentary Figure S1, also see Methods). It is important to note that
the effect of background noise is additive, whereas the effect of
reverberation is convolutional. Therefore, these manipulations
affect call types differently. For example, reverberation minimally
affects tonal calls (e.g., the guinea pig wheek or marmoset phee),
but is severely detrimental to calls with fast frequency or temporal
modulations (e.g., the guinea pig whine or the marmoset trill) by
smearing spectrotemporal cues at short time scales.

Condition-specific training improved model performance, but
these benefits were typically limited to the same condition.
Previous computational and behavioral studies have shown that

Fig. 1 Hierarchical structure of the computational model. The core model consisted of a dense spectrotemporal stage, a sparse feature detection stage,
and a voting stage. a An acoustic stimulus was filtered by a cochlear filter bank to obtain a dense spectrotemporal representation of the stimulus, called a
cochleagram. b The second stage had call-specific feature detectors (FDs) modeled as a spectrotemporal receptive field followed by a threshold. Template
matching by cross-correlation (limited to the bandwidth of the FD) was used to obtain an FD Vm response, and the Vm response was compared with the
threshold to obtain a binary output. Each call type had a set of most informative FDs, whose STRFs and thresholds were learned during model training.
c Finally, in the voting stage, the weighted outputs of the FDs for a given call type were combined to form the final response of the model. In this study, in
addition to these stages, we extended the model to include three mechanisms (boxes with dashed lines): (1) condition-specific training, (2) contrast gain
control, and (3) top–down modulation of the excitability of FDs. ACx auditory cortex, Amp amplitude, CF Characteristic frequency, FD feature detector,
STRF spectrotemporal receptive field.
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categorization performance is better when training and testing
conditions are the same (e.g., trained and tested using noisy calls)
compared to when testing is done in a different condition (e.g.,
trained with clean calls and tested with noisy calls)13–15. To
determine whether these results also applied to our hierarchical
model, we trained and tested the model on calls degraded by
noise or reverberation and compared its performance to the
performance of the model trained only on clean calls. Condition-
specific training significantly improved model performance both
in noise and in reverberation for both species (Fig. 3, Supple-
mentary Table S1). Note that Fig. 3 (and the following figures)
only show two call types per species for brevity; however, statistics
(in all tables) are reported based on all call types (three for
marmosets, four for guinea pigs). Compared to models trained on
clean calls and tested with noisy calls (black lines in Fig. 3a, b),
training models with noisy calls (red lines) significantly improved
performance when models were tested with noisy calls (Fig. 3a,
b). Interestingly, the models trained on noisy calls sometimes
performed slightly worse to categorize clean calls compared to the
models that were trained on clean calls (e.g., Twitter and Chut,
see data point marked ‘∞’ in Fig. 3a, b).

To test whether these benefits translated across conditions, we
tested the reverberation-trained model on noisy calls (green lines
in Fig. 3a, b) and vice versa (red lines in Fig. 3c, d). Compared to
same-condition training, across-condition training led to sub-
stantially lower improvement (indicated by lower χ2 values in
Supplementary Table S1) over the clean-trained model for call
types of both species (i.e., marmosets and guinea pigs). In fact,
across-condition training sometimes resulted in poorer perfor-
mance than the original model [e.g., noise-trained Wheek model
when tested in reverberation, χ2 1ð Þ ¼ 33:9; p ¼ 5:9´ 10�9].
Overall, these results show that condition-specific training can
improve auditory categorization performance, but these benefits
do not generalize well to other conditions.

As a final model to assess the effect of training, we trained a
model on a mix of noisy and reverberant conditions and
hypothesized that its performance in noisy and reverberant test
conditions would lie between the performances of models with
same-condition and across-condition training. Surprisingly, the
model trained on mixed conditions generally performed better
than models with same-condition training (Supplementary
Table S1, higher χ2 for mixed training compared to same-
condition training). Overall, these results suggest that a model
trained on multiple conditions can outperform models trained on
specific conditions.

Next, we tested whether FD properties were systematically
different for models trained using noisy calls or reverberant calls
compared to the model trained using clean calls. We considered
the duration, center frequency, bandwidth, reduced kurtosis, and
threshold of FDs. We found little systematic difference for both
marmoset call types (Supplementary Figure S2, Supplementary
Table S2) and guinea pig call types (Supplementary Figure S3,
Supplementary Table S3), as indicated by η2p values, which were
less than or equal to 0.05. The exceptions were feature duration,
which was significantly longer (only for marmoset calls), and
threshold, which was significantly lower, for FDs in noise-trained
models. Intuitively, an increase in feature duration is expected
because integration over longer durations might be necessary to
overcome the degradation of features by noise. But a reduction
(large and significant for marmoset calls, small and significant for
guinea pig calls) in FD threshold was not expected because noise
is traditionally assumed to increase the mean and reduce the
standard deviation of neural activity18 (but see potential
explanation in the next section). Overall, the spectrotemporal
properties of the FDs were largely unaffected by training in noise
or reverberation.

Training in different listening conditions is biologically
realistic. In both humans and animals, the acquisition of
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vocalization categories early in development could conceivably
occur in a range of different listening environments including
clean, noisy, and reverberant conditions. But features learned
during early exposure to a limited set of conditions would not be
sufficient for all possible conditions that an individual might
encounter over their lifetimes. An alternative approach would be
to learn a small set of features in clean or a limited set of
conditions and use other adaptive neural mechanisms to either
modify noisy inputs to simulate clean inputs or modify feature
properties to handle noisy inputs. As a first step towards
modeling such adaptive mechanisms, we characterized the effects
of additive white Gaussian noise or reverberation on the activity
at the spectrotemporal input layer, which serves as the input to
the FD layer. We also characterized the effects of noise or
reverberation on the Vm responses of FDs, which were trained in
clean conditions.

Noise and reverberation affected response distributions of both
the spectrotemporal and feature-detector layers. The distribu-
tions of response amplitudes across all frequency and time bins at
the spectrotemporal layer, i.e., the FD inputs (Fig. 4b), and across
all time bins of the FD Vm responses (Fig. 4c) are shown in Fig. 4.
Similar to the effects of adding noise to the acoustic waveform
(i.e., increase in mean and decrease in standard deviation)18,
noise increased the mean [2.6 (clean), 3.0 (0 dB), and 3.5
(−10 dB)] and reduced the standard deviation [2. 7 (clean), 2.0
(0 dB), and 1.9 (−10 dB)] of the neural activity in the dense
spectrotemporal layer (FD inputs, red and green lines in Fig. 4b).
The FD Vm responses also showed an increase in the mean
amplitude (rightward shift in distributions, Fig. 4c) and a

decrease in its standard deviation (smaller spread in distributions,
Fig. 4c) with increasing noise level. Similar effects on FD input
and output probability distributions were also observed for
reverberant conditions (Fig. 4f-h). Reverberation slightly
increased the mean [2.63 (clean), 2.74 (T30= 128 ms), 2.71
(T30= 644 ms)] and substantially reduced the standard deviation
[2.67 (clean), 2.23 (in both 128 ms and 644 ms T30 conditions)]
at the FD input stage (Fig. 4g). However, what is relevant for
categorization in our model is whether a given feature was
detected, i.e., whether the maximum value of the FD Vm response
(triangles) exceeded the threshold of that FD (dashed lines). We
observed that the maximal FD Vm response in fact decreased with
increasing noise/reverberation level. The maximum Vm response
was also lower in the two reverberant conditions (Fig. 4h). This is
likely because the FD Vm response is the extent to which a given
feature ‘matches’ (using the max. cross-correlation value as a
metric) the input, and the max. cross-correlation values pro-
gressively decreased with increasing noise level. In the section
above, we had observed that features trained in noisy conditions
exhibited lower thresholds than those trained in clean conditions.
This decreased threshold likely compensates for the lower max-
imal values in the FD Vm response distributions, thereby resulting
in a supra-threshold FD output.

This observation of obtaining a supra-threshold FD output in
noisy conditions by lowering the threshold in noise-trained
features led us to explore two alternative strategies to counter
these effects of noise/reverberation to improve model perfor-
mance with a single set of FDs trained in the clean condition.
First, we implemented contrast gain control, which normalizes
the input to FDs such that the mean and standard deviation do
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not change with noise/reverberation level (Fig. 4d, i). Note that
this is an upper bound on stimulus contrast restoration (i.e.,
complete restoration within the receptive fields of FDs) as
neurophysiological data show that the auditory system only
partially restores stimulus contrast19,34. Second, because noise
decreases the maximum value of the FD Vm response (Fig. 4c, h),
the threshold can be dynamically varied based on the level of
noise/reverberation to improve feature detection in noise. In the
following sections, we test the efficacy of these two adaptive
mechanisms.

Contrast gain control improved model performance in noise
and in reverberation. In the core model (i.e., the model without

contrast gain control), the FD STRF was demeaned and nor-
malized to have a standard deviation of 1. This STRF was cross-
correlated with the input cochleagram, and as such, there was no
stimulus-dependent contrast gain adjustment to the input
cochleagram. In the first adaptive addition to the model, we
implemented a version of contrast gain control (without any top-
down modulatory influences) to study its effects in isolation (note
that combined effects are addressed at the end of the next sec-
tion). To computationally implement contrast gain control, we
demeaned both the input cochleagram (within the FD band-
width) and the FD STRF and normalized both to have a standard
deviation of 1. After this normalization, cochleagram (FD input)
amplitudes were largely overlapping at all tested noise levels
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as b–c but with contrast gain control included in the model. f Top, the same cochleagram as in a [in clean (left) and reverberant (J1 reverberation condition
with T30= 128ms)]. Middle, the same feature as in a. Bottom, the Vm response of the feature detector had a slightly higher mean but substantially lower
fluctuations in the reverberant condition compared to the clean condition. g–j Same format as b–e but for the reverberant condition in f. a.u. arbitrary units,
CF characteristic frequency, CGC Contrast gain control, FD feature detector, SNR signal-to-noise ratio.
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(Fig. 4d) and reverberation conditions (Fig. 4i), and the range of
FD Vm responses was limited between −1 and 1. Compared to
the model without gain control, the FD Vm response distributions
for the gain control model showed increased overlap, and the
maximal value of the Vm response distributions crossed the
threshold at more adverse noise levels (Fig. 4e) and reverberation
conditions (Fig. 4j). When we tested categorization performance,
we saw that contrast gain control improved model performance
both in noise and in reverberation for most call types (Fig. 5,
Supplementary Table S4). However, the trends of these benefits
were rather heterogenous (e.g., high improvement at low SNRs
for Twitter but at high SNRs for Chut, and little benefit for
Wheek in either noise or reverberation). Overall, these results
demonstrated that contrast gain control could improve auditory
categorization in noise and in reverberation, but even a perfect
implementation of contrast gain control was insufficient to obtain
significant benefits across all stimulus types.

Model performance improved with top-down excitability
modulation, but the magnitude of modulation scaled with SNR
and not with reverberation strength. Next, we evaluated the
effect of top-down influences on model performance without
contrast gain control being present. As mentioned earlier, noise
reduced the maximum Vm response value of a FD. But crucially,
this reduction occurred for both within-class as well as outside-
class calls for a FD (Fig. 6a). Therefore, even though both within-
class and outside-class distributions of maximum FD Vm
responses were shifted down to lower values, these distributions
retained some degree of separation, and optimal performance
could theoretically be obtained by scaling down the FD threshold
appropriately. We estimated the optimal threshold ratio for each
condition (each SNR or reverberant condition) as the ratio value
that maximized classification in that condition (quantified using

the mutual information between true and predicted call types).
This optimal threshold ratio approximately linearly scaled with
SNR (in dB) for both marmoset and guinea pig calls (Fig. 6c, d)
and was more or less consistent across call types for each species.
This was not the case for different reverberation conditions,
however (Fig. 6e, f); in this case, the optimal threshold ratio was
about the same across many tested reverberant conditions. In this
implementation of the model, we used our knowledge of the
stimulus SNR to implement this scaling. The brain would not
have access to the stimulus SNR a priori, but as we show in the
next section, stimulus SNR estimated from population activity at
the dense stage in a biologically feasible manner can be used for
excitability modulation with comparable performance benefits.
Biologically, the reduction in threshold with noise level could be
accomplished by increasing the excitability of FD neurons, i.e., by
reducing the distance between each FD neuron’s resting mem-
brane potential and spike threshold. One possible implementa-
tion of excitability modulation in a neural circuit could be the
disinhibition of FD neurons by cholinergic or noradrenergic
inputs acting on canonical disinhibitory circuit motifs25–30.

Next, we quantified model performance as a result of the
top–down modulation of FDs. Model performance improved
significantly and consistently for all call types in the SNR
conditions (Fig. 7, Supplementary Table S4), and typically
benefits scaled with the magnitude of top-down modulation
(i.e., optimal ratio in Fig. 6c, d). Model performance improved
but to a lesser extent for reverberant conditions (lower χ2 values
in Supplementary Table S4). In summary, these results show that
top-down modulation of FDs improves model performance, but
these benefits are greater in noisy conditions than in reverberant
conditions.

Finally, we also assessed the improvement in model perfor-
mance when both contrast gain control and top-down
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modulation were present (gray lines in Fig. 7). The model
performance was better (higher χ2 values in Supplementary
Table S4) when both mechanisms were present compared to
when only one mechanism was present (with the one exception
being the SNR-test condition for guinea pig calls where top–down
alone was better than the combination of both mechanisms).
Taken together, these results suggest that the combination of
contrast gain control or top–down modulation can further
improve model performance beyond the improvement that either
mechanism offers.

Next, we directly assessed how the sum of benefits (perfor-
mance improvement over the core model) due to individual
mechanisms (contrast gain control and top-down modulation)
compared to the benefit when both mechanisms operated
simultaneously. For both noisy (Fig. 8a) and reverberant (Fig. 8b)
conditions, benefits due to individual mechanisms summed
linearly when the d prime value was <1, but sublinearly at higher
performance levels. This sublinear sum of benefits could indicate
a ceiling effect in performance. In other words, when the model
performance had been boosted by contrast gain control to a
certain degree, additional top-down excitability modulation no
longer provided as much of a benefit as it did when applied to the
core model. But it is important to note, however, that the addition
of top-down excitability modulation did not negatively impact the
benefit provided by contrast gain control. No consistent pattern
was apparent in the combined benefit provided by these
mechanisms across call types and species in noisy conditions.
For example, while a greater benefit at noisier SNRs was observed
for guinea pig calls (Fig. 8c, blue lines), the opposite was true for

marmoset calls (Fig. 8c, red lines). For call types of both species,
no clear trend was apparent for reverberant conditions either
(Fig. 8d). Therefore, we next assessed whether the benefits due to
the adaptive mechanisms depended on the baseline performance
of the core model (i.e., core model performance without contrast
gain control or top-down modulation). In both noisy (Fig. 8e)
and reverberant (Fig. 8f) conditions, the benefit of incorporating
adaptive mechanisms was little to none when the performance of
the core model was already high (d’>3), further highlighting a
ceiling effect. Adaptive mechanisms typically did not provide any
benefit when the core model performance was very poor (d’<0.5),
suggesting a performance floor had been reached at highly
adverse conditions. It was at an intermediate baseline perfor-
mance range (d’ between 0.5 and 3) where adaptive mechanisms
provided the maximal benefit. This variability in benefit is likely
due to the underlying variability in the spectrotemporal proper-
ties of target (within-class) call types and how well-separated the
target call features are from non-target (outside-class) call
features. For example, as discussed earlier, guinea pig wheek
calls are likely tolerant to both noise (by virtue of being
spectrally separated from other calls) and reverberation (by
virtue of the information varying at a time scale much longer than
reverberation time scales). Thus, high baseline model perfor-
mance could be maintained over a large range of SNRs and
reverberation strengths, with little room for improvement by
adaptive mechanisms. In contrast, guinea pig rumble calls are
susceptible to degradation by both noise (by virtue of their large
spectral overlap with other call types) and reverberation (by
virtue of rapid envelope modulations being a distinguishing
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feature). For this call type, adaptive mechanisms could improve
the performance of the model at multiple SNRs and reverberation
strengths. Overall, these results reveal that the high variability in
the spectrotemporal structures of calls (necessary for separating
call categories) could also lead to high variability in their
susceptibility to different environmental degradations, thus
requiring the presence of multiple adaptive mechanisms to cope
with these challenges.

Biologically feasible implementation of contrast gain control
and top-down modulation of excitability. The adaptive model
implementations presented so far are engineering solutions—for
example, we implemented perfect contrast gain control by mea-
suring the response distributions of the spectrotemporal layer and
normalizing the responses using the mean and standard devia-
tion. However, such implementations may not be biologically
realistic. For example, contrast gain control in the auditory sys-
tem partially restores stimulus contrast at a neuronal level over
multiple processing stages, whereas our contrast gain control
implementation aimed to restore contrast completely for each FD
at a single stage. To determine the extent to which biologically
feasible implementations of the mechanisms presented above aid
model performance in noise, we explored the following alternate
implementations (Fig. 9). For contrast gain control, instead of
modifying cochleagrams (zero mean and unity variance) in a
boxcar manner (matched to the bandwidth and duration of the
FD) for each time step of the cross-correlation operation, we
subtracted the mean of the entire cochleagram and normalized it
to have unity variance. This way, contrast restoration was not
optimized to within the bandwidth and duration of individual
FDs. Such an operation could be performed in neural circuits by
widely tuned inhibitory neurons that have been implicated in
contrast gain control in the visual system35,36, although the
auditory system may have different implementations37. We
retrained the model with this cochleagram normalization to learn
FDs. Similar to the previous model with contrast gain control,
this modified implementation of contrast gain control also led to

significantly better performance than the original model (i.e.,
without any contrast gain control, Fig. 9d).

To implement top-down control, we had previously used
knowledge of stimulus SNR, which is available to the experi-
menter but is not accessible to biological neural circuits.
Therefore, we first asked whether the mean (µ) and standard
deviation (σ) of cochleagrams can be used to estimate the acoustic
SNR. The mean can be estimated from the population activity of
neurons at multiple stages in the auditory pathway. The standard
deviation (or modulation) can be estimated biologically by
neurons in the inferior colliculus, whose responses have been
shown to be sensitive to temporal modulations38–40. We found
the ratio of µ over σ to be (negatively) correlated with the acoustic
SNR (Fig. 9a, b). Next, we learned the optimal threshold ratio (κ)
based on the µ/σ of cochleagrams, thus doing away with the need
to use the acoustic SNR. A single κ (median across all calls) was
estimated for all call types of each species (marmoset or guinea
pig). To demonstrate feasibility, for a test call type (marmoset
Twitter call), we used κ to scale the threshold of FDs for
individual cochleagrams. Similar to the top-down model, the
performance of this biologically feasible model was significantly
better than the original model (Fig. 9d).

Comparison of model performance with behavior. Finally, we
compared the performance of the proposed models with guinea
pig behavioral performance (Fig. 10). Guinea pigs were trained on
a go/no-go task using only clean calls, where the target/distractor
call pair was either chut/rumble or wheek/whine7. Guinea pig call
categorization was then tested in noisy conditions at different
SNRs and in different simulated reverberant environments. Note
that guinea pig behavior is governed by two underlying processes
—the recognition of the correct call category and the expression
of that recognition by performing an operant action. The model
only captures the former process, and while other factors such as
motivation, attention, and past performance might influence
guinea pigs’ operant behavior, the model perfectly reports the
recognized call category. Thus, the models are expected to over-
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perform when compared to guinea pig behavior. To adjust for
this over-performance, we learned an additional mapping to
match the model and guinea pig performances in the clean
condition (overlapping points for behavior and models at point
marked ‘∞’ in Fig. 10a, b and ‘Clean’ in Fig. 10c, d). This map-
ping, learned only using clean calls, was then applied to adjust
model performance in the noisy and reverberant conditions (see
Methods). The adjusted performance of the original model
without adaptive mechanisms (black lines, Fig. 10a, b) was con-
sistently worse than guinea pig behavioral performance (orange
lines, Fig. 10a, b) in noisy conditions. Both mixed training and
contrast gain control improved adjusted model performance at
adverse SNRs, but were insufficient by themselves to match gui-
nea pig behavioral performance (blue and magenta lines, Fig. 10a,
b). In contrast, optimal top-down excitability modulation
improved adjust model performance to levels better than guinea
pig behavior (green lines, Fig. 10a, b). Adjusted model perfor-
mance for the original as well as extended models broadly mat-
ched guinea pig behavior in the reverberation conditions, and the
models as well as behavior did not show a strong dependence on
reverberation strength (Fig. 10c, d). Taken together, these results
suggest that a combination of adaptive mechanisms is necessary
for the hierarchical model to recapitulate guinea pig behavioral
performance for call categorization.

Discussion
In this study, we explored biologically realistic extensions to a
hierarchical model for auditory categorization to improve its
performance in realistic listening conditions. We tested three
mechanisms including task-specific training, contrast gain

control, and top-down modulation of FD sensitivity. All three
mechanisms improved model performance when tested in noisy
and reverberant listening environments; however, the trends and
magnitude of improvement varied across mechanisms. We
demonstrated that the proposed contrast gain control and top-
down modulation mechanisms can be implemented by biological
circuits. Finally, the comparison of model performance with
guinea pig behavioral performance revealed that these mechan-
isms could be employed in a flexible manner to accomplish call
categorization based on both task demands and call spectro-
temporal properties.

Task-specific training led to little systematic differences in the
spectrotemporal properties of feature detectors. Consistent with
previous studies, our results showed that task-specific training
can improve auditory categorization performance in noisy and in
reverberant conditions. The benefit was typically greater at more
adverse conditions (e.g., between −10- and 0-dB SNR, and for J1-
J4, which were the strongest reverberant conditions). Interest-
ingly, the noise-trained model frequently showed non-monotonic
performance curves as a function of SNR and performed worse in
clean conditions than models trained on clean calls (e.g., Twitter,
Chut). While a small amount of noise during training can have a
regularization effect to improve the generalizability of models13,
uniformly using all SNRs during training likely led to overfitting
of the model to noisy conditions. Overfitting may be avoided by
appropriately weighing SNRs during training by following SNRs
that animals and humans naturally experience.

Even though task-specific training improved model perfor-
mance in the same task, the benefits were significantly reduced or
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sometimes negative when training and testing conditions were
different. Mixed training, i.e., training in multiple types of
degraded listening conditions, however, could ameliorate these
generalization issues. Task-specific training did not lead to any
systematic changes in the spectrotemporal properties of FDs
(except for duration for noise-trained models for marmoset calls).
But although training in adverse conditions can help in real-
world categorization, the listening conditions that are present
during category acquisition may not encompass all the different
listening conditions an organism might encounter in its lifetime.
Thus, adaptive mechanisms operating after training that can cope
with novel listening environments might present a more general
solution.

Contrast gain control improved model performance, but
benefits varied across call types. Contrast gain control is ubi-
quitous in both visual and auditory pathways, and more specifi-
cally, it has been reported along the auditory pathway from the
auditory nerve19 to the auditory cortex17. Contrast gain control
can tune the dynamic range of individual neurons to the statistics
of the incoming sound, which can aid in adverse listening con-
ditions. For example, additive noise increases the mean power of
the signal while reducing its variance34. The effect of reverbera-
tion on communication signals such as speech and vocalization is
also similar as reverberation smears the temporal envelope, thus
reducing the contrast in the signal41. Contrast gain control sig-
nificantly improved model performance both in noise and in
reverberation. However, the trends of improvement were quite
heterogeneous across call types, suggesting that the benefits of
contrast gain control depend on the spectrotemporal properties of
the signal. Future studies are needed to understand what features
determine the benefit due to contrast gain control.

While contrast gain control has been documented along several
regions of the auditory pathways16–22, the underlying neural
circuits are not settled. Unlike the visual system, neither shunting
inhibition by parvalbumin-expressing interneurons35,42 nor
contrast-dependent variability in membrane potential responses43

seem to contribute to contrast gain control in the mouse auditory
cortex37. A promising alternate mechanism that may contribute
to contrast gain control is synaptic depression, by which neurons
adapt to steady backgrounds (e.g., in noisy or reverberant
conditions), thus maintaining their dynamic range to respond
to transient signals (e.g., onset of the next syllable in ongoing
speech)44–46. Explicitly incorporating synaptic depression in our
model represents one way in which the biological feasibility of our
model can be further increased, and by which additional testable
predictions can be generated.

Top-down modulation led to divergent benefits in noise and in
reverberation. Attention plays a critical role in shaping percep-
tion in challenging environments across modalities47. Effects of
attention are thought to be mediated by top-down modulation,
which can shape information representation along the auditory
pathway23,24. We modeled such top-down feedback control by
scaling the excitability of FDs to optimally improve task perfor-
mance in noise and in reverberation. Interestingly, the optimal
scale was proportional to noise level (in dB), but it was nearly
constant across different reverberant conditions. Similarly, ben-
efits of top–down control were greater in noisy conditions than in
reverberant conditions (as indicated by χ2 values in Supplemen-
tary Table S4). One interpretation of this result is that increased
listening effort is not beneficial in reverberant environments.
While unexpected, this interpretation is supported by psychoa-
coustic studies in humans that demonstrate that listening effort
(as indexed by the pupil diameter, which correlates with

cholinergic activation48,49) scales with noise level but not with the
strength of reverberation50–52. Our model cannot explain at
present, however, why FD excitability does not scale with rever-
beration strength. One possible explanation is that the time scale
of information that provides contrast between call categories is
much greater than the reverberation T30s used in this study.
These results suggest that top-down attentional mechanisms are
primarily beneficial in noisy environments, but these benefits are
substantially reduced in reverberant environments.

Top-down processes, such as attention or listening effort, could
modulate auditory cortical activity through several proposed
pathways23,24. One example of such a mechanism involves a
canonical microcircuit in which vasoactive intestinal polypeptide
(VIP)-expressing interneurons disinhibit excitatory cortical
principal cells by inhibiting somatostatin and parvalbumin-
expressing interneurons (which inhibit principal cells). Since
VIP-expressing interneurons are activated by cholinergic inputs
(at least in the primary visual cortex), this disinhibition could be
recruited during effortful listening. Two other relevant pathways
that also modulate cortical excitability involve the noradrenergic
locus coeruleus25,26 and the cholinergic basal forebrain27–30.
While both these pathways generally modulate auditory cortical
activity globally (i.e., in a frequency-independent manner), which
is similar to our implementation of top-down modulation (e.g.,
FDs for all calls were similarly modulated at the same noise level
or reverberation condition), it remains to be seen whether other
top-down mechanisms exist that are optimized to the spectro-
temporal properties of the incoming sound. Further experiments
are necessary to directly test whether FD excitability can be
modulated via one of these proposed pathways.

In conclusion, we have extended a versatile auditory categor-
ization model, whose strengths include its straightforward
biological interpretability and efficient trainability, modularity to
include adaptive neural mechanisms, and showed that mechan-
isms such as contrast gain control and top-down feedback control
can improve auditory categorization performance in challenging
listening environments.

Methods
All procedures followed the NIH Guide for the Care and Use of Laboratory Ani-
mals and were approved by the institutional animal care and use committee of the
University of Pittsburgh (protocol #21069431).

Stimuli. The model was trained to perform an auditory categorization task in
which it discriminated one call type from other conspecific call types. Two sets of
vocalization stimuli were used, including calls from marmosets and guinea pigs,
two highly vocal and social species. Marmoset calls have been described in detail in
a previous study32 and have been used in the previous version of the model5.
Briefly, these calls were recorded from eight adult marmosets of either sex living in
a marmoset colony using an array of directional microphones. Guinea pig calls
were primarily recorded from four male and one female guinea pigs. Male guinea
pigs were placed in pairs in a sound-attenuating booth, sometimes in two different
chambers separated by an acrylic divider33. A directional condenser microphone,
suspended from the sound booth ceiling, was used to record these vocalizations. To
record wheek calls, the microphone was placed outside the guinea pig cages in the
colony using a tripod. Guinea pig calls were recorded using Sound Analysis Pro
2011, sampled at 48 kHz, and manually curated using Praat53.

Noisy calls were generated by adding white Gaussian noise to calls. Reverberant
calls were generated using eight different impulse responses (Supplementary
Figure S1). The strength of reverberation was quantified by the T30 metric, which
indicates the duration for signal energy to decay to 30 dB below the original value
(Supplementary Figure S1). Four of these impulse responses (denoted by J1-J4)
have been previously used for human speech perception studies54. These impulse
responses were originally generated using Odean55 and had the following T30s—
128 (J1), 236 (J2), 461 (J3), and 644 (J4) ms. The other four impulse responses were
downloaded from online sources (Open Acoustic Impulse Response library [Open
AIR], www.openair.hosted.york.ac.uk, and other now-defunct websites) and
corresponded to the following naturalistic environments—snow site (E1,
T30= 7 ms), plastic bin (E2, 57 ms), living room (E3, 81 ms), and forest (E4,
124 ms).
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Model architecture. The model used in this study was similar to the model we have
previously used5,7. Briefly, the model was hierarchical and comprised three stages.
The first stage was a spectrotemporal stage that used a phenomenological model6 of
the auditory periphery to generate the cochleagram, which is a physiologically
accurate spectrotemporal representation of the stimulus. Inner hair cell voltage was
used as the response instead of the auditory nerve fiber firing rate (which was used in
our previous publication5) to achieve faster implementation. Cochleagrams were
generated at a sampling frequency of 1 kHz and the center frequencies spanned
200 Hz to 20 kHz in 0.1-octave steps. Marmoset calls were processed using a mar-
moset head-related transfer function56, which was estimated using the GRABIT.m
MATLAB function57. Cochlear tuning in the periphery model was set to “human” for
marmoset cochleagrams and to “cat” for guinea pig cochleagrams. The overall sti-
mulus level of clean and degraded calls was set to 65 dB SPL. In the second stage, the
cochleagram was filtered by the STRF of a feature detector (FD) to obtain its
membrane potential response or Vm response, following which a threshold was
applied to the maximum of the filter output to obtain a binary output (1 if maximum
Vm response >threshold). Finally, outputs of a set of maximally informative FDs were
weighted and combined in a voting stage to obtain the final response of the model for
a call. The set of maximally informative FDs as well as their thresholds and weights
were learned during training, as described next.

The model was trained to classify one call type (within-class) from all other
conspecific call types (outside-class). Marmoset models were trained using 500
within-class calls and 500 outside-class calls, and tested with a non-overlapping set
of within- and outside-class calls (500 calls each). Guinea pig models used 70% of
all available calls for training and the remaining for testing. Therefore, the number
of calls for training (and testing) was different for different call types (number of
training calls for chut=248, rumble=176, wheek=230, whine=300). During
training, initial features were generated by randomly segmenting rectangular blocks
(i.e., random center frequency, bandwidth, onset time, and duration) of within-
class cochleagrams. The number of initial features was 6000 for marmoset call
types and 4000 for guinea pig call types.

For each FD, its spectrotemporal pattern was used as the STRF to filter a
cochleagram, and the maximum value of the Vm response was used to construct
distributions for within-class and outside-class calls. The threshold of the FD was
set to the correlation value that maximized the mutual information between the
binary output (after applying the threshold on the FD Vm response) and the
stimulus category (within-class and outside-class). The weight of the FD was set to
the log-likelihood ratio of this classification. After estimating the threshold and
weight of individual FDs, a greedy search was implemented to estimate a set of
maximally informative and least redundant FDs (MIF set) for each model. This was
an iterative process, where we sequentially added FDs to the MIF set to increase the
hit rate without increasing the false alarm rate. The maximum number of FDs in an
MIF set was set to 20. We trained five instantiations of the model for each call type
(by using non-overlapping feature detectors) to assess the reliability of model
performance statistically. Model performance was quantified using receiver-
operating curve (ROC) analysis; we first estimated the area under the ROC curve
(AUC) using model output (i.e., the output of the voting stage) for within-class and
outside-class calls and then estimated the sensitivity index (d’) from this area as:
d0 ¼ ffiffiffi

2
p

´ norminv AUCð Þ, where norminv is the inverse of the Normal cumulative
distribution function. The same set of within-class and outside-class calls were used
to quantify performance in clean, noisy, and reverberant conditions.

Feature-detector properties. We characterized FDs by estimating several prop-
erties such as threshold, center frequency, bandwidth, and duration. In addition, we
also estimated the complexity (tailedness) of FDs using reduced kurtosis (i.e.,
3 subtracted from the kurtosis, where kurtosis is the ratio of the fourth central
moment to the fourth power of the standard deviation). Higher (lower) values for
reduced kurtosis indicate a heavy-tailed (light-tailed) distribution relative to the
Normal distribution. Distributions were plotted using standard violin plots58 that
show the median, the interquartile range, and the 1.5× interquartile range.

Animal behavior. Detailed protocols for guinea pig (GP) behavioral experiments
have been previously described7. Briefly, food-restricted animals were trained on a
go/no-go task, where the target(go)/distractor(no-go) stimulus pair was either
chut/rumble or wheek/whine. All behavioral experiments were conducted in a
custom-built sound-attenuating booth. The booth was virtually divided into ‘home’
and ‘reward’ regions. Sounds were presented from an overhead speaker, and
the animal’s position was tracked using an overhead camera. A trial was initiated
when the GP entered the home region, and a stimulus (target or distractor) was
presented after 3-5 s (randomly drawn from a uniform distribution). Following
stimulus presentation, the animal either stayed in the home region (“no-go”
response) or moved to the reward region (“go” response) within a 5-s window. The
outcome of each trial was one of the following: hit (target stimulus and go
response), miss (target stimulus and no-go response), correct rejection (distractor
stimulus and no-go response), and false alarm (distractor stimulus and go
response). Animals received a food pellet as a reward for each hit, but an air puff
and a brief timeout (with lights off) for false alarms. Animals were first trained on
only clean calls until their performance d-prime reached 1.5, and then tested in a
different set of calls that were clean, or degraded by noise or reverberation. Animal
training and testing were performed in a block design, where each block contained

up to five sessions with 40 trials in each session. For testing in noise, each block
corresponded to a unique SNR. For reverberation testing, each block had a mix of
clean and all reverberant calls. Behavioral data reported here were acquired from
four animals for SNR conditions and two animals for reverberant conditions.

Comparison between model and behavioral performances. To compare the
model performance with animal behavioral performance in the go/no-go task, we
added a winner-take-all (WTA) stage at the back end of the model7. Briefly, for any
stimulus (either a target or a distractor), we computed the normalized target model
response and the normalized distractor model response. The normalized target
(distractor) model response is calculated as the sum of the weights of all detected
target (distractor) features divided by the sum of all feature weights for the target
(distractor) model. Thus, the normalized response for either model ranged between
0 (no feature detected) and 1 (all features detected). The difference between the
normalized target and distractor model responses was the WTA-stage output,
which ranged between −1 (all distractor model features and none of the target
model features were detected) and 1 (all target model features and none of the
distractor model features were detected). For an ideal-observer model, a decision
regarding whether the stimulus was a target or distractor could be made simply
based on the sign of the above quantity (positive values—target; negative values—
distractor). However, because the animal’s decision could be additionally influ-
enced by unmodeled variables such as motivation, arousal, and past performance,
the ideal-observer model is expected to over-perform compared to animals.

To adjust our model to incorporate these factors, we learned a mapping to
transform WTA output to decision probability such that the model performance
(d’) and behavioral performance matched in the clean condition. We then used the
same mapping to transform the ideal-observer d’ to adjusted d’ in noisy and
reverberant conditions. The mapping was based on a two-parameter (the slope k,
and symmetric minimum and maximum λ) logistic function, F x; k; λð Þ, where
F x; k; λð Þ ¼ λþ 1� 2λð Þ= 1þ e�kx

� �
, which mapped WTA output to model go-

rate for a stimulus. The d’ metric was estimated in the same way as that for guinea
pig behavior; for each call type, the go-rate was averaged across all target and
distractor calls to estimate hit rate and false alarm rate. Then d’ was estimated as d’
= norminv(hit)—norminv(false alarm). A single set of k and λ were learned for five
different instantiations of individual mechanisms for each target-distractor call
type pair. k and λ were learned separately for testing in noise (Supplementary
Figure S4b) and testing in reverberation (Supplementary Figure S4e) because
different sets of animals were used in those behavioral experiments.

Statistics and reproducibility. All statistical analyses were performed in R59

(version 4.2.1). The effects of various mechanisms were evaluated by constructing
linear mixed-effect models (lme4 package60) and comparing model fits using anova
(stats package). To evaluate the effect of a mechanism (six mechanisms in total:
noisy training, reverberation training, mixed training, contrast gain control, top-
down modulation, or contrast-gain control + top-down modulation) on the per-
formance in a testing condition (i.e., in noise or in reverberation), two models were
constructed (separately for each species):

1. full model: dprime ~ testing_parameter+ call_type*mechanism+ (1 |model_id)
2. null model: dprime ~ testing_parameter+ call_type+ (1 |model_id)

where testing_parameter was either SNR in dB (interval scale) or reverberation type
(nominal scale), call_type (nominal scale) was the conspecific call types used for
each species, and model_ID (a random effect, nominal scale) was the model
instantiation index. The term call_type was excluded for statistical analysis in Fig. 9
as the data were for only a single marmoset call type (i.e., twitter). Five separate
model instantiations (with non-overlapping MIF sets) were trained for each call
type to assess training convergence and reproducibility of our results.

The effect of training on model FD parameters (e.g., duration, CF) was
quantified using the F-test as well as the partial eta squared61 (η2p, estimated using

the etaSquared function in the lsr package62 with type II sum of squares) values,
which approximates the fraction of total variance captured by training. A linear
model (lm in stats package) was fit for each combination of species, training
condition, and FD property with FD property value as the outcome. Predictors
included call type, training condition, and their interaction. Center frequency was
log-transformed.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All guinea pig vocalizations used in this study are available at the following website:
https://github.com/vatsunlab/CaviaVOX.

Code availability
The code for the models is available at the following website: https://github.com/
vatsunlab/Feature_based_auditory_model.
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